scholarly journals Carbon Footprint of Honey in Different Beekeeping Systems

2021 ◽  
Vol 13 (19) ◽  
pp. 11063
Author(s):  
Arianna Pignagnoli ◽  
Stefano Pignedoli ◽  
Emanuele Carpana ◽  
Cecilia Costa ◽  
Aldo Dal Prà

Life Cycle Assessment (LCA) has been increasingly used for the improvement of the environmental performance of products and services, including agro-food chains. Pollination by honeybees can be regarded as one of the functions of an apicultural system and is of utmost importance for both natural ecosystems and agriculture. Furthermore, the beekeeping chain can represent an instrument for the protection and conservation of honeybee diversity when local subspecies are used. The Carbon Footprint of honey evaluates greenhouse gas emissions throughout the Life Cycle Assessment—more specifically, emissions of carbon dioxide, nitrous oxide, and methane. To this aim, data from beekeeping farms were collected, including data on annual honey production, other hive products, the geographical locations of the apiaries, processing plants, technologies used, and fuel and energy consumption. Based on the ISO 14040 method for the use of Life Cycle Assessment, the Carbon Footprints that were calculated for honey ranged from 1.40 to 2.20 kg CO2e/kg of honey for migratory beekeeping and from 0.380 to 0.48 kg CO2e/kg of honey for non-migratory beekeeping. The movements for the management of migratory beehives (on average, 44 km/hive for farm 1, 32 km/hive for farm 2, and 13 km/hive for farm 3) represented the main impact in migratory beekeeping systems, and they were quantified as 1.234, 1.113, and 0.68 CO2e/kg of honey. However, electricity represented the main impact of systems without migratory practices.

2020 ◽  
Vol 12 (22) ◽  
pp. 9466
Author(s):  
Katerina S. Stylianou ◽  
Emily McDonald ◽  
Victor L. Fulgoni III ◽  
Olivier Jolliet

Food and diet life cycle assessment (LCA) studies offer insights on the environmental performance and improvement potential of food systems and dietary patterns. However, the influence of ingredient resolution in food-LCAs is often overlooked. To address this, four distinct decomposition methods were used to determine ingredients for mixed dishes and characterize their environmental impacts, using the carbon footprint of the U.S. daily pizza intake as a case study. Pizza-specific and daily pizza intake carbon footprints varied substantially between decomposition methods. The carbon footprint for vegetarian pizza was 0.18–0.45 kg CO2eq/serving, for meat pizza was 0.56–0.73 kg CO2eq/serving, and for currently consumed pizzas in the U.S. (26.3 g/person/day; 75 pizzas types) was 0.072–0.098 kg CO2eq/person/day. These ranges could be explained by differences in pizza coverage, ingredient resolution, availability of ingredient environmental information, and ingredient adjustability for losses between decomposition methods. From the approaches considered, the USDA National Nutrient Database for Standard Reference, which reports standardized food recipes in relative weights, appears to offer the most appropriate and useful food decompositions for food-LCAs. The influence and limitations of sources of reference flows should be better evaluated and acknowledged in food and diet LCAs.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 17-24 ◽  
Author(s):  
PIA JOUR ◽  
KARIN HALLDÉN ◽  
EVA WACKERBERG

This paper presents a life cycle assessment (LCA) of bleached eucalyptus kraft pulp production in Brazil. The entire production system was investigated, starting with forestry and ending with bleached pulp at the gate of the pulp mill. Alternative bleaching sequences were compared for three different scenarios using somewhat different elemental chlorine-free (ECF) sequences: Dhot(EPO)DD, Dhot(EPO)DP, and aZeDP. The main difference between the scenarios investigated was the magnitude of the carbon footprint contribution from bleaching. For the base case and chemical island scenarios (both reflecting Brazilian conditions), the contribution was 15%-18% of the total carbon footprint. For the ecoinvent scenario, the corresponding share was 34%-41%. The ecoinvent scenario represents generic LCA data for bleaching chemicals. Ecoinvent is a public database commonly included in commercial LCA software. For each scenario, the alternative bleaching sequences studied resulted in similar carbon footprints of the bleached pulp. A comparison of the data from the different scenarios showed a large range of carbon footprints for the chemicals used for pulp bleaching. It is crucial to select data sets that are relevant in terms of geography and technology. The most dominant contributors to the carbon footprint of the unbleached pulp were forestry and pulp production. Although the focus has been on carbon footprints, the contributions to other environmental effects commonly included in LCAs were also assessed and only minor differences between the alternative bleaching sequences were found.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


2014 ◽  
Vol 52 ◽  
pp. 120-125 ◽  
Author(s):  
Mr. Amit Kumar ◽  
Mr. Tanvir Singh ◽  
Mr. Anupam Verma ◽  
Yunfei Liu

2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


2021 ◽  
Vol 49 (4) ◽  
pp. 538-550
Author(s):  
Laura Naranjo ◽  
Jorge Castillo ◽  
Valesca Montes ◽  
Eleuterio Yáñez

Society's awareness of environmental issues increases every day. In this context, the concept of carbon footprint (CF) arises as a calculation tool that quantifies greenhouse gasses (GHG) emitted during the life cycle (LC) of a product. This calculation method is used in many productive sectors throughout the world; however, the Chilean fisheries sector has not notified the use of this tool or initiatives in that sense. This study performs a calculation of the CF of artisanal gillnet hake (Merluccius gayi gayi) fishery of the Caleta Portales, located in Valparaíso, Chile. The ISO 14040: 2006 methodology was used. The analysis was limited from the boat departure until the catch is landed, as a gate-to-gate life cycle assessment (LCA). The fuel consumption data and information related to the fleet were used as the main source of information. The Caleta Portales hake landings were 1,340.484 kg in 2011 and 703,411 kg in 2012. This fleet released into the atmosphere in 2011, 0.47 CO2 equivalent per kg of hake landed, and 0.58 kg CO2 eq, in 2012. It is the first result of CF reported in a Chilean fishery. This result can lead to an increase in the competitiveness of this hake fishery, as it can generate a positive impact on encouraging consumers to prefer the consumption from those places that have calculated the CF and are less than other food products.


Sign in / Sign up

Export Citation Format

Share Document