scholarly journals Landfill Site Selection for Medical Waste Using an Integrated SWARA-WASPAS Framework Based on Spherical Fuzzy Set

2021 ◽  
Vol 13 (24) ◽  
pp. 13950
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Shabnam Rahnamay Bonab ◽  
Ali Memarpour Ghiaci ◽  
Gholamreza Haseli ◽  
Hana Tomaskova ◽  
...  

Selecting suitable locations for the disposal of medical waste is a serious matter. This study aims to propose a novel approach to selecting the optimal landfill for medical waste using Multi-Criteria Decision-Making (MCDM) methods. For better considerations of the uncertainty in choosing the optimal landfill, the MCDM methods are extended by spherical fuzzy sets (SFS). The identified criteria affecting the selection of the optimal location for landfilling medical waste include three categories; environmental, economic, and social. Moreover, the weights of the 13 criteria were computed by Spherical Fuzzy Step-Wise Weight Assessment Ratio Analysis (SFSWARA). In the next step, the alternatives were analyzed and ranked using Spherical Fuzzy Weighted Aggregated Sum Product Assessment (SFWASPAS). Finally, in order to show the accuracy and validity of the results, the proposed approach was compared with the IF-SWARA-WASPAS method. Examination of the results showed that in the IF environment the ranking is not complete, and the results of the proposed method are more reliable. Furthermore, ten scenarios were created by changing the weight of the criteria, and the results were compared with the proposed method. The overall results were similar to the SF-SWARA-WASPAS method.

2018 ◽  
Vol 10 (2) ◽  
pp. 65-79 ◽  
Author(s):  
Shabbir Uddin ◽  
Sandeep Chakravorty ◽  
Amitava Ray ◽  
Karma Sonam Sherpa

In this article, methodologies have been proposed for site selection of sub-station considering technical and non-technical constraints. Firstly, a systematic frame has been developed considering various factors that influence the optimal location of the sub-station. Various factors considered are evaluated using DEMATEL-QFD. An evaluation has been done between the outcome of the TOPSIS (Technique for order preference by similarity to ideal solution) method and the COPRAS (Compressed Proportional Assessment) method. Finally, Spearman rank co-relation co-efficients indicates the strength of association of both the methodologies. A case study is done using GIS to prove the justification of the methodologies to the applied area. The application of the methodologies will help the decision maker improve the plan, location and grid renovation of the distribution sub-stations.


2018 ◽  
Vol 34 ◽  
pp. 02010 ◽  
Author(s):  
Habiba Ibrahim Mohammed ◽  
Zulkepli Majid ◽  
Norhakim Bin Yusof ◽  
Yamusa Bello Yamusa

Landfilling remains the most common systematic technique of solid waste disposal in most of the developed and developing countries. Finding a suitable site for landfill is a very challenging task. Landfill site selection process aims to provide suitable areas that will protect the environment and public health from pollution and hazards. Therefore, various factors such as environmental, physical, socio-economic, and geological criteria must be considered before siting any landfill. This makes the site selection process vigorous and tedious because it involves the processing of large amount of spatial data, rules and regulations from different agencies and also policy from decision makers. This allows the incorporation of conflicting objectives and decision maker preferences into spatial decision models. This paper particularly analyzes the multi-criteria evaluation (MCE) method of landfill site selection for solid waste management by means of literature reviews and surveys. The study will help the decision makers and waste management authorities to choose the most effective method when considering landfill site selection.


2020 ◽  
Vol 12 (20) ◽  
pp. 8397
Author(s):  
Ali Mostafaeipour ◽  
Seyyed Jalaladdin Hosseini Dehshiri ◽  
Seyyed Shahabaddin Hosseini Dehshiri ◽  
Mehdi Jahangiri ◽  
Kuaanan Techato

In recent decades, many countries have shown a growing interest in the use of renewable energies for power generation. Geothermal energy is a clean and environmentally friendly source of renewable energy that can be used to produce electricity and heat for industrial and domestic applications. While Afghanistan has undeniably good geothermal potential that can be utilised to alleviate the country’s current energy limitations, so far this potential has remained completely untapped. In this study, the suitability of 21 provinces for geothermal project implementation in Afghanistan was evaluated using multiple multi-criteria decision-making (MCDM) methods. The stepwise weight assessment ratio analysis (SWARA) method was used to weigh each criterion while the additive ratio assessment (ARAS) method was used to rank potential geothermal sites. The technique for order of preference by similarity to ideal solution (TOPSIS), the vlse kriterijumsk optimizacija kompromisno resenje (VIKOR), and the weighted aggregated sum product assessment (WASPAS) methods were also used in this study. These rankings were then examined via sensitivity analysis which indicated that a 5% change in criteria weights altered the rankings in all methods except the VIKOR method. Volcanic dome density was ranked the most important criteria. All the methods identified Ghazni province as the most suitable location for geothermal project implementation in Afghanistan.


2015 ◽  
Vol 66 (1) ◽  
pp. 98-101 ◽  
Author(s):  
Miloš Madić ◽  
Miroslav Radovanović ◽  
Dušan Petković ◽  
Bogdan Nedić

Abstract Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.


Sign in / Sign up

Export Citation Format

Share Document