scholarly journals Secure Resolving Sets in a Graph

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 439
Author(s):  
Hemalathaa Subramanian ◽  
Subramanian Arasappan

Let G = (V, E) be a simple, finite, and connected graph. A subset S = {u1, u2, …, uk} of V(G) is called a resolving set (locating set) if for any x ∈ V(G), the code of x with respect to S that is denoted by CS (x), which is defined as CS (x) = (d(u1, x), d(u2, x), .., d(uk, x)), is different for different x. The minimum cardinality of a resolving set is called the dimension of G and is denoted by dim(G). A security concept was introduced in domination. A subset D of V(G) is called a dominating set of G if for any v in V – D, there exists u in D such that u and v are adjacent. A dominating set D is secure if for any u in V – D, there exists v in D such that (D – {v}) ∪ {u} is a dominating set. A resolving set R is secure if for any s ∈ V – R, there exists r ∈ R such that (R – {r}) ∪ {s} is a resolving set. The secure resolving domination number is defined, and its value is found for several classes of graphs. The characterization of graphs with specific secure resolving domination number is also done.

10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.


Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A dominating set in a graph $G=(V,E)$ is a set $S$ such that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. While the minimum cardinality of a dominating set in $G$ is called the domination number of $G$ denoted by $\gamma(G)$, the maximum cardinality of a minimal dominating set in $G$ is called the upper domination number of $G$ denoted by $\Gamma(G)$. We call the difference between these two parameters the \textit{domination gap} of $G$ and denote it by $\mu_d(G) = \Gamma(G) - \gamma(G)$. While a graph $G$ with $\mu_d(G)=0$ is said to be a \textit{well-dominated} graph, we call a graph $G$ with $\mu_d(G)=1$ an \textit{almost well-dominated} graph. In this work, we first establish an upper bound for the cardinality of bipartite graphs with $\mu_d(G)=k$, where $k\geq1$, and minimum degree at least two. We then provide a complete structural characterization of almost well-dominated bipartite graphs with minimum degree at least two. While the results by Finbow et al.~\cite{domination} imply that a 4-cycle is the only well-dominated bipartite graph with minimum degree at least two, we prove in this paper that there exist precisely 31 almost well-dominated bipartite graphs with minimum degree at least two.


Throughout this paper, consider G = (V,E) as a connected graph. A subset D of V(G) is a set dominating set of G if for every M  V / D there exists a non-empty set N of D such that the induced sub graph <MUN> is connected. A subset D of the vertex set of a graph G is called a co-secure dominating set of a graph if D is a dominating set, and for each u' D there exists a vertex v'V / D such that u'v' is an edge and D \u'v' is a dominating set. A co-secure dominating set D is a co-secure set dominating set of G if D is also a set dominating set of G. The co-secure set domination number G s cs γ is the minimum cardinality of a co-secure set dominating set. In this paper we initiate the study of this new parameter & also determine the co-secure set domination number of some standard graphs and obtain its bounds.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


2016 ◽  
Vol 15 (3) ◽  
pp. 55-64
Author(s):  
John Sherra ◽  
Badekara Sooryanarayana

A dominating set $D$ of a graph $G$ which is also a resolving set of $G$ is called a metro dominating set. A metro dominating set $D$ of a graph $G(V,E)$ is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D| = 1$ for each vertex $v\in V-D$ and the minimum cardinality of an UMD-set of $G$ is the unique metro domination number of $G$. In this paper, we determine unique metro domination number of $P_n\times P_2$.


Author(s):  
B. Senthilkumar ◽  
Y. B. Venkatakrishnan ◽  
H. Naresh Kumar

Let [Formula: see text] be a simple graph. A set [Formula: see text] is called a super dominating set if for every vertex [Formula: see text], there exist [Formula: see text] such that [Formula: see text]. The minimum cardinality of a super dominating set of [Formula: see text], denoted by [Formula: see text], is called the super domination number of graph [Formula: see text]. Characterization of trees with [Formula: see text] is presented.


Sign in / Sign up

Export Citation Format

Share Document