The minimum eccentric distance sum of trees with given distance k-domination number

2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.

2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


2019 ◽  
Vol 12 (4) ◽  
pp. 1455-1463
Author(s):  
Sergio Canoy, Jr ◽  
Reynaldo Villarobe Mollejon ◽  
John Gabriel E. Canoy

Let G be a (simple) connected graph with vertex and edge sets V (G) and E(G),respectively. A set S ⊆ V (G) is a hop dominating set of G if for each v ∈ V (G) \ S, there exists w ∈ S such that dG(v, w) = 2. The minimum cardinality of a hop dominating set of G, denoted by γh(G), is called the hop domination number of G. In this paper we revisit the concept of hop domination, relate it with other domination concepts, and investigate it in graphs resulting from some binary operations.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


2016 ◽  
Vol 10 (1) ◽  
pp. 46-64
Author(s):  
José Cáceres ◽  
Carmen Hernando ◽  
Mercè Mora ◽  
Ignacio Pelayo ◽  
María Puertas

A k??quasiperfect dominating set of a connected graph G is a vertex subset S such that every vertex not in S is adjacent to at least one and at most k vertices in S. The cardinality of a minimum k-quasiperfect dominating set in G is denoted by ?1k(G). These graph parameters were first introduced by Chellali et al. (2013) as a generalization of both the perfect domination number ?11(G) and the domination number ?(G). The study of the so-called quasiperfect domination chain ?11(G) ? ?12(G)?... ? ?1?(G) = ?(G) enable us to analyze how far minimum dominating sets are from being perfect. In this paper, we provide, for any tree T and any positive integer k, a tight upper bound of ?1k(T). We also prove that there are trees satisfying all possible equalities and inequalities in this chain. Finally a linear algorithm for computing ?1k(T) in any tree T is presented.


2019 ◽  
Vol 12 (3) ◽  
pp. 978-998
Author(s):  
Ferdinand P. Jamil ◽  
Hearty Nuenay Maglanque

Let $G$ be a connected graph. A cost effective dominating set in a graph $G$ is any set $S$ of vertices in $G$ satisfying the condition that each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$. A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$.In this paper, we characterized the cost effective dominating sets in the join, corona and composition of graphs. As direct consequences, we the bounds or the exact cost effective domination numbers, minimal cost effective domination numbers and upper cost effective domination numbers of these graphs were obtained.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750006 ◽  
Author(s):  
J. John ◽  
N. Arianayagam

For a connected graph [Formula: see text], a set [Formula: see text] is called a detour dominating set of [Formula: see text], if [Formula: see text] is a detour set and dominating set of [Formula: see text]. The detour domination number [Formula: see text] of [Formula: see text] is the minimum order of its detour dominating sets and any detour dominating set of order [Formula: see text] is called a [Formula: see text] - set of [Formula: see text]. The detour domination numbers of some standard graphs are determined. Connected graph of order [Formula: see text] with detour domination number [Formula: see text] or [Formula: see text] is characterized. For positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph with [Formula: see text] and [Formula: see text].


A subset S of V of a non-trivial connected graph G is called a Blast dominating set (BD-set), if S is a connected dominating set and the induced sub graph 𝑽 − 𝑺 is triple connected. The minimum cardinality taken over all such Blast Dominating sets is called the Blast Domination Number (BDN) of G and is denoted as, 𝜸𝒄 𝒕𝒄 (𝑮). In this article, let us mull over the generalized transformation graphs 𝑮 𝒂𝒃 and get hold of the analogous lexis of the Blast domination numbers for all the rage, transformation graphs, 𝑮 𝒂𝒃 and their complement graphs, 𝑮 𝒂 𝒃 for linear and circular graphs.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2795-2801 ◽  
Author(s):  
Adriana Hansberg ◽  
Bert Randerath ◽  
Lutz Volkmann

For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number k(G) is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number 1(G) is the usual domination number (G). Fink and Jacobson showed in 1985 that the inequality ?k(G)?(G)+k?2 is valid for every connected graph G. In this paper, we concentrate on the case k = 2, where k can be equal to ?, and we characterize all claw-free graphs and all line graphs G with ?(G) = ?2(G).


Author(s):  
Gerald B. Monsanto ◽  
Helen M. Rara

Let [Formula: see text] be a connected graph. Brigham et al., Resolving domination in graphs, Math. Bohem. 1 (2003) 25–36 defined a resolving dominating set as a set [Formula: see text] of vertices of a connected graph [Formula: see text] that is both resolving and dominating. A resolving dominating is a [Formula: see text]-movable resolving dominating set of [Formula: see text] if for every [Formula: see text], either [Formula: see text] is a resolving dominating set or there exists a vertex [Formula: see text] such that [Formula: see text] is a resolving dominating set of [Formula: see text]. The minimum cardinality of a [Formula: see text]-movable resolving dominating set of [Formula: see text], denoted by [Formula: see text] is the [Formula: see text]-movable[Formula: see text]-domination number of [Formula: see text]. A [Formula: see text]-movable resolving dominating set with cardinality [Formula: see text] is called a [Formula: see text]-set of [Formula: see text]. In this paper, we characterize the [Formula: see text]-movable resolving dominating sets in the join and lexicographic product of two graphs and determine the bounds or exact values of the [Formula: see text]-movable resolving domination number of these graphs.


Sign in / Sign up

Export Citation Format

Share Document