scholarly journals A Unified Mathematical Formalism for First to Third Order Dielectric Response of Matter: Application to Surface-Specific Two-Colour Vibrational Optical Spectroscopy

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153 ◽  
Author(s):  
Christophe Humbert ◽  
Thomas Noblet

To take advantage of the singular properties of matter, as well as to characterize it, we need to interact with it. The role of optical spectroscopies is to enable us to demonstrate the existence of physical objects by observing their response to light excitation. The ability of spectroscopy to reveal the structure and properties of matter then relies on mathematical functions called optical (or dielectric) response functions. Technically, these are tensor Green’s functions, and not scalar functions. The complexity of this tensor formalism sometimes leads to confusion within some articles and books. Here, we do clarify this formalism by introducing the physical foundations of linear and non-linear spectroscopies as simple and rigorous as possible. We dwell on both the mathematical and experimental aspects, examining extinction, infrared, Raman and sum-frequency generation spectroscopies. In this review, we thus give a personal presentation with the aim of offering the reader a coherent vision of linear and non-linear optics, and to remove the ambiguities that we have encountered in reference books and articles.

2011 ◽  
Vol 64 (9) ◽  
pp. 1269 ◽  
Author(s):  
Marek Samoc ◽  
T. Christopher Corkery ◽  
Andrew M. McDonagh ◽  
Marie P. Cifuentes ◽  
Mark G. Humphrey

The cubic hyperpolarizabilities of 1,3,5-(trans-[RuCl(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (1), 1,3,5-(trans-[Ru(C≡CPh)(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (2), 1,3,5-(trans-[Ru(C≡CC6H4-4-NO2)(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (3), 1,3,5-{trans-[Ru(C≡C-3,5-(trans-[Ru(C≡CPh)(dppe)2(C≡CC6H4-4-C≡C)])2C6H3)(dppe)2(C≡CC6H4-4-C≡C)]}3C6H3 (4), and 1,3,5-{trans-[Ru(C≡C-3,5-(trans-[Ru(C≡CC6H4-4-NO2)(dppe)2(C≡CC6H4-4-C≡C)])2C6H3)(dppe)2(C≡CC6H4-4-C≡C)]}3C6H3 (5) have been assessed over the spectral range 520–1600 nm using the Z-scan technique and ~150 fs pulses. All complexes exhibit negative values of γreal (corresponding to self-defocusing behaviour) and significant positive values of γimag (corresponding to two-photon absorption) at short wavelengths (up to 1000 nm). The maximal values of γreal and γimag increase in magnitude on dendrimer generation increase (proceeding from 2 to 4 or 3 to 5). The open-aperture Z-scan results have been used to confirm and contrast the two-photon (2PA) and three-photon absorption (3PA) behaviour of 1–5, the data being consistent with the existence of 2PA at the short wavelength range, but with significant 3PA at longer wavelengths for 1–3 and 5, a record 3PA coefficient for an inorganic complex for 5 at 1180 nm, and appreciable 3PA at the telecommunications wavelength of 1300 nm.


1995 ◽  
Vol 17 (11-12) ◽  
pp. 1555-1559 ◽  
Author(s):  
G. C. La Rocca ◽  
F. Bassani ◽  
V. M. Agranovich

2018 ◽  
Vol 1151 ◽  
pp. 126-134 ◽  
Author(s):  
Nasreddine Ennaceur ◽  
Boutheina Jalel ◽  
Rokaya Henchiri ◽  
Marie Cordier ◽  
Isabelle Ledoux-Rak

1996 ◽  
Vol 68 (7) ◽  
pp. 1429-1434 ◽  
Author(s):  
J. Seto ◽  
S. Tamura ◽  
Nobutoshi Asai ◽  
Noriyuki Kishii ◽  
Yasunori Kijima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document