organometallic complexes
Recently Published Documents


TOTAL DOCUMENTS

1458
(FIVE YEARS 157)

H-INDEX

67
(FIVE YEARS 6)

Author(s):  
Raphael M. Jay ◽  
Kristjan Kunnus ◽  
Philippe Wernet ◽  
Kelly J. Gaffney

The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Author(s):  
Yi Wang ◽  
Yatao Lang ◽  
Chao-Jun Li ◽  
Huiying Zeng

Decarbonylative-coupling reaction is generally promoted by transition-metal (via organometallic complexes) or peroxide (via radical intermediates), often at high temperature to facilitate the CO release. Herein, a visible-light-induced, transition-metal and external...


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Gamal A. El-Hiti ◽  
Dina S. Ahmed ◽  
Emad Yousif ◽  
Omar S. A. Al-Khazrajy ◽  
Mustafa Abdallh ◽  
...  

The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed that the roughness factor of polymers’ irradiated surfaces was improved significantly in the presence of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using scanning electron microscopy showed a high degree of homogeneity and the appearance of pores that were different in size and shape. The current work surveys for the first time the use of newly synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in the field.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7778
Author(s):  
Timofei Goncharov ◽  
Abulkosim Nasriddinov ◽  
Anastasia Zubenko ◽  
Sergey Tokarev ◽  
Tatyana Shatalova ◽  
...  

This paper presents a comparative analysis of H2S sensor properties of nanocrystalline SnO2 modified with Ag nanoparticles (AgNPs) as reference sample or Ag organic complexes (AgL1 and AgL2). New hybrid materials based on SnO2 and Ag(I) organometallic complexes were obtained. The microstructure, compositional characteristics and thermal stability of the composites were thoroughly studied by X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). Gas sensor properties to 2 ppm H2S demonstrated high sensitivity, selectivity toward other reducing gases (H2 (20 ppm), NH3 (20 ppm) and CO (20 ppm)) and good reproducibility of the composites in H2S detection at low operating temperatures. The composite materials also showed a linear detection range in the concentration range of 0.12–2.00 ppm H2S even at room temperature. It was concluded that the predominant factors influencing the sensor properties and selectivity toward H2S in low temperature region are the structure of the modifier and the chemical state of silver. Thus, in the case of SnO2/AgNPs reference sample the chemical sensitization mechanism is more possible, while for SnO2/AgL1 and SnO2/AgL2 composites the electronic sensitization mechanism contributes more in gas sensor properties. The obtained results show that composites based on nanocrystalline SnO2 and Ag(I) organic complexes can enhance the selective detection of H2S.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7600
Author(s):  
Iogann Tolbatov ◽  
Alessandro Marrone ◽  
Cecilia Coletti ◽  
Nazzareno Re

Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes’ properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.


2021 ◽  
Vol 76 (13) ◽  
pp. 1520-1524
Author(s):  
S. V. Goryainov ◽  
C. Esparza ◽  
L. N. Kulikova ◽  
A. R. Borisova ◽  
P. A. Kumandin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3921
Author(s):  
María Moral-Zamorano ◽  
Isabel Quijada-Garrido ◽  
Verónica San-Miguel ◽  
Berna Serrano ◽  
Juan Baselga ◽  
...  

The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect. In this work, the functionalization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were characterized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy. The thermoresponsive behavior was also studied for various polymeric solutions in water by UV–vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic complex could affect the transition associated with the lower critical solution temperature (LCST), specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity was tested by the contact angle and also DNA interactions.


2021 ◽  
pp. 109953
Author(s):  
Tamara Maldonado ◽  
Erick Flores ◽  
Leonel Llanos ◽  
Daniel Aravena ◽  
Andrés Vega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document