scholarly journals Machines Imitating Human Thinking Using Bayesian Learning and Bootstrap

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 389
Author(s):  
Sunghae Jun

In the field of cognitive science, much research has been conducted on the diverse applications of artificial intelligence (AI). One important area of study is machines imitating human thinking. Although there are various approaches to development of thinking machines, we assume that human thinking is not always optimal in this paper. Sometimes, humans are driven by emotions to make decisions that are not optimal. Recently, deep learning has been dominating most machine learning tasks in AI. In the area of optimal decisions involving AI, many traditional machine learning methods are rapidly being replaced by deep learning. Therefore, because of deep learning, we can expect the faster growth of AI technology such as AlphaGo in optimal decision-making. However, humans sometimes think and act not optimally but emotionally. In this paper, we propose a method for building thinking machines imitating humans using Bayesian decision theory and learning. Bayesian statistics involves a learning process based on prior and posterior aspects. The prior represents an initial belief in a specific domain. This is updated to posterior through the likelihood of observed data. The posterior refers to the updated belief based on observations. When the observed data are newly added, the current posterior is used as a new prior for the updated posterior. Bayesian learning such as this also provides an optimal decision; thus, this is not well-suited to the modeling of thinking machines. Therefore, we study a new Bayesian approach to developing thinking machines using Bayesian decision theory. In our research, we do not use a single optimal value expected by the posterior; instead, we generate random values from the last updated posterior to be used for thinking machines that imitate human thinking.

2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2021 ◽  
Vol 19 (2) ◽  
pp. 2056-2094
Author(s):  
Koji Oshima ◽  
◽  
Daisuke Yamamoto ◽  
Atsuhiro Yumoto ◽  
Song-Ju Kim ◽  
...  

<abstract><p>Data-driven and feedback cycle-based approaches are necessary to optimize the performance of modern complex wireless communication systems. Machine learning technologies can provide solutions for these requirements. This study shows a comprehensive framework of optimizing wireless communication systems and proposes two optimal decision schemes that have not been well-investigated in existing research. The first one is supervised learning modeling and optimal decision making by optimization, and the second is a simple and implementable reinforcement learning algorithm. The proposed schemes were verified through real-world experiments and computer simulations, which revealed the necessity and validity of this research.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document