scholarly journals The Axial Anomaly in Lorentz Violating Theories: Towards the Electromagnetic Response of Weakly Tilted Weyl Semimetals

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1181
Author(s):  
Andrés Gómez ◽  
Luis Urrutia

Using the path integral formulation in Euclidean space, we extended the calculation of the abelian chiral anomalies in the case of Lorentz violating theories by considering a new fermionic correction term provided by the standard model extension, which arises in the continuous Hamiltonian of a weakly tilted Weyl semimetal, and whose cones have opposite tilting. We found that this anomaly is insensitive to the tilting parameter, retaining its well-known covariant form. This independence on the Lorentz violating parameters is consistent with other findings reported in the literature. The initially imposed gauge invariant regularization was consistently recovered at the end of the calculation by the appearance of highly non-trivial combinations of the covariant derivatives, which ultimately managed to give only terms containing the electromagnetic tensor. We emphasize that the value of the anomaly with an arbitrary parameter is not automatically related to the effective action describing the electromagnetic response of such materials.

2015 ◽  
Vol 91 (12) ◽  
Author(s):  
R. A. C. Correa ◽  
Roldão da Rocha ◽  
A. de Souza Dutra

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lingli Zhou ◽  
Bo-Qiang Ma

We compare the Lorentz violation terms of the pure photon sector between two field theory models, namely, the minimal standard model extension (SME) and the standard model supplement (SMS). From the requirement of the identity of the intersection for the two models, we find that the free photon sector of the SMS can be a subset of the photon sector of the minimal SME. We not only obtain some relations between the SME parameters but also get some constraints on the SMS parameters from the SME parameters. The CPT-odd coefficients(kAF)αof the SME are predicted to be zero. There are 15 degrees of freedom in the Lorentz violation matrixΔαβof free photons of the SMS related with the same number of degrees of freedom in the tensor coefficients(kF)αβμν, which are independent from each other in the minimal SME but are interrelated in the intersection of the SMS and the minimal SME. With the related degrees of freedom, we obtain the conservative constraints(2σ)on the elements of the photon Lorentz violation matrix. The detailed structure of the photon Lorentz violation matrix suggests some applications to the Lorentz violation experiments for photons.


2014 ◽  
Vol 41 (5) ◽  
pp. 055003 ◽  
Author(s):  
J I Aranda ◽  
F Ramírez-Zavaleta ◽  
D A Rosete ◽  
F J Tlachino ◽  
J J Toscano ◽  
...  

Author(s):  
C. Malbrunot ◽  
C. Amsler ◽  
S. Arguedas Cuendis ◽  
H. Breuker ◽  
P. Dupre ◽  
...  

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10 −9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’.


Sign in / Sign up

Export Citation Format

Share Document