electromagnetic tensor
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1181
Author(s):  
Andrés Gómez ◽  
Luis Urrutia

Using the path integral formulation in Euclidean space, we extended the calculation of the abelian chiral anomalies in the case of Lorentz violating theories by considering a new fermionic correction term provided by the standard model extension, which arises in the continuous Hamiltonian of a weakly tilted Weyl semimetal, and whose cones have opposite tilting. We found that this anomaly is insensitive to the tilting parameter, retaining its well-known covariant form. This independence on the Lorentz violating parameters is consistent with other findings reported in the literature. The initially imposed gauge invariant regularization was consistently recovered at the end of the calculation by the appearance of highly non-trivial combinations of the covariant derivatives, which ultimately managed to give only terms containing the electromagnetic tensor. We emphasize that the value of the anomaly with an arbitrary parameter is not automatically related to the effective action describing the electromagnetic response of such materials.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Shahar Hod

AbstractIt has recently been revealed that massless scalar fields which are non-minimally coupled to the Maxwell electromagnetic tensor can be supported in the exterior spacetime regions of spherically symmetric charged black holes. The boundary between scalarized charged black-hole spacetimes and bald (scalarless) Reissner–Nordström black holes is determined by the presence of a critical existence-line which describes spatially regular linearized scalar ‘clouds’ that are supported in the black-hole spacetime. In the present paper we use analytical techniques in order to solve the Klein–Gordon wave equation for the non-minimally coupled linearized scalar fields in the spacetimes of near-extremal supporting black holes. In particular, we derive a remarkably compact analytical formula for the discrete resonant spectrum $$\{\alpha (l,Q/M;n)\}^{n=\infty }_{n=1}$$ { α ( l , Q / M ; n ) } n = 1 n = ∞ which characterizes the dimensionless coupling parameter of the composed Reissner–Nordström-black-hole-nonminimally-coupled-massless-scalar-field configurations along the critical existence-line of the Einstein–Maxwell-scalar theory (here Q/M is the dimensionless charge-to-mass ratio of the central supporting black hole and l is the angular harmonic index of the supported scalar configurations).


2020 ◽  
Vol 35 (15) ◽  
pp. 2050119
Author(s):  
Alcides Garat

In this paper, we want to better understand the causality reflection that arises under a subset of Abelian local gauge transformations in geometrodynamics. We proved in previous papers that in Einstein–Maxwell spacetimes, there exist two local orthogonal planes of gauge symmetry at every spacetime point for non-null electromagnetic fields. Every vector in these planes is an eigenvector of the Einstein–Maxwell stress–energy tensor. The vectors that span these local orthogonal planes are dependent on electromagnetic gauge. The local group of Abelian electromagnetic gauge transformations has been proved isomorphic to the local groups of tetrad transformations in these planes. We called LB1 the local group of tetrad transformations made up of SO(1, 1) plus two different kinds of discrete transformations. One of the discrete transformations is the full inversion two by two which is a Lorentz transformation. The other discrete transformation is given by a matrix with zeroes on the diagonal and ones off-diagonal two by two, a reflection. The group LB1 is realized on this plane, we call this plane one, and is spanned by the time-like and one space-like vectors. The other local orthogonal plane is plane two and the local group of tetrad transformations, we call this LB2, which is just SO(2). The local group of Abelian electromagnetic gauge transformations is isomorphic to both LB1 and LB2, independently. It has already been proved that a subset of local electromagnetic gauge transformations that leave the electromagnetic tensor invariant induces a change in sign in the norm of the tetrad vectors that span the local plane one. The reason is that one of the discrete transformations on the local plane one that belongs to the group LB1 is not a Lorentz transformation, it is a flip or reflection. It is precisely on this kind of discrete transformation that we have an interest since it has the effect of changing the signature and the causality. This effect has never been noticed before.


2019 ◽  
Vol 64 (12) ◽  
pp. 1112
Author(s):  
V. V. Kisel ◽  
E. M. Ovsiyuk ◽  
A. V. Ivashkevich ◽  
V. M. Red’kov

Fradkin’s model for a spin-3/2 particle in the presence of external fields is investigated. Applying the general Gel’fand–Yaglom formalism, we develop this model on the base of a set of six irreducible representations of the proper Lorentz group, making up a 20-component wave function. Applying the standard requirements such as the relativistic invariance, single nonzero mass, spin S =3/2, P-symmetry, and existence of a Lagrangian for the model, we derive a set of spinor equations, firstly in the absence of external fields. The 20-component wave function consists of a bispinor and a vector-bispinor. In the absence of external fields, the Fradkin model reduces to the minimal Pauli–Fierz (or Rarita–Schwinger) theory. Details of this equivalence are given. Then we take the presence of external electromagnetic fields into account. It turns out that the Fradkin equation in the minimal form contains an additional interaction term governed by electromagnetic tensor Fab. In addition, we consider the external curved space-time background. In the generally covariant case, the Fradkin equation contains the additional gravitational interaction term governed by the Ricci tensor Rab. If the electric charge of a particle is zero, the Fradkin model remains correct and describes a neutral Majorana-type spin-3/2 particle interacting additionally with the geometric background through the Ricci tensor.


Author(s):  
Peter Mann

This chapter discusses classical electromagnetism. As an example of a classical field theory, electrodynamics is framed using a Lagrangian density. Until pioneers such as Faraday and Maxwell, electric vector fields and magnetic vector fields were regarded as separate phenomena entirely and it was only in the late nineteenth century that scientists saw them as components of a larger concept, the electromagnetic field. Maxwell’s equations are derived and the wave equations are revisited. The chapter discusses gauge fixing, the Hodge star, the Lorentz force law and molecular multipole moments and closes by defining the electromagnetic tensor and the Minkowski metric tensor.


Author(s):  
Noushin Karimian ◽  
Michael D. O'Toole ◽  
Anthony J. Peyton

2015 ◽  
Vol 30 (25) ◽  
pp. 1550124
Author(s):  
A. Merdaci ◽  
N. Boudiaf ◽  
L. Chetouani

The problem of the Dirac particle submitted to a wave [Formula: see text] of a four-dimensional constant electromagnetic tensor is solved with the path integral approach via the use of Lorentz transformation and with an adequate choice for the velocity of the mobile referential.We show that the supersymmetric action associated to the pair [Formula: see text] can be determined from that associated to the pair [Formula: see text] and from that associated to the pair [Formula: see text] following simple relations.The wave functions and the energy spectrums are thus exactly determined and tested. Special cases are considered as well.


2002 ◽  
Vol 11 (09) ◽  
pp. 1355-1380 ◽  
Author(s):  
J. PONCE DE LEON

We consider a version of Kaluza–Klein theory where the cylinder condition is not imposed. The metric is allowed to have explicit dependence on the "extra" coordinate(s). This is the usual scenario in brane-world and space-time-matter theories. We extend the usual discussion by considering five-dimensional metrics with off-diagonal terms. We replace the condition of cylindricity by the requirement that physics in four-dimensional space-time should remain invariant under changes of coordinates in the five-dimensional bulk. This invariance does not eliminate physical effects from the extra dimension but separates them from spurious geometrical ones. We use the appropriate splitting technique to construct the most general induced energy-momentum tensor, compatible with the required invariance. It generalizes all previous results in the literature. In addition, we find two four-vectors, [Formula: see text] and [Formula: see text], induced by off-diagonal metrics, that separately satisfy the usual equation of continuity in 4D. These vectors appear as source-terms in equations that closely resemble the ones of electromagnetism. These are Maxwell-like equations for an antisymmetric tensor [Formula: see text] that generalizes the usual electromagnetic one. This generalization is not an assumption, but follows naturally from the dimensional reduction. Thus, if[Formula: see text] could be identified with the electromagnetic tensor, then the theory would predict the existence of classical magnetic charge and current. The splitting formalism used allows us to construct 4D physical quantities from five-dimensional ones, in a way that is independent from how we choose our space-time coordinates from those of the bulk.


Sign in / Sign up

Export Citation Format

Share Document