scholarly journals Optimal Battery Energy Storage System Based on VAR Control Strategies Using Particle Swarm Optimization for Power Distribution System

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1692
Author(s):  
Prakasit Prabpal ◽  
Yuttana Kongjeen ◽  
Krischonme Bhumkittipich

We designed a battery energy storage system (BESS) based on the symmetrical concept where the required control is by the symmetrical technique known as volt/var control. The integration of BESS into the conventional distribution has significantly impacted energy consumption over the past year. Load demand probability was used to investigate optimal sizing and location of BESS in an electrical power system. The open electric power distribution system simulator (OpenDSS) was interfaced with MATLAB m-file scripts and presented by using time series analysis with load demand. The optimal BESS solution was adapted by using a genetic algorithm (GA) optimization technique and particle swarm optimization (PSO). The simulation results showed that the BESS was directly connected to the power grid with GA and PSO, and it was observed that BESS sizing also varied for these two values of 1539 kW and 1000 kW, respectively. The merit of those values is the power figure of the system, which is necessary for installation. Therefore, optimal sizing and location of the BESS are helpful to reduce the impact from the load demand to the total system loss and levelling of the energy demand from the power system network. The integration of the BESS can be applied to improve grid stability and store surplus energy very well. The grid increased the stability of the power system and reduced the impact from the large scale of BESS penetration.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Rajitha Udawalpola ◽  
Taisuke Masuta ◽  
Taisei Yoshioka ◽  
Kohei Takahashi ◽  
Hideaki Ohtake

Power imbalances such as power shortfalls and photovoltaic (PV) curtailments have become a major problem in conventional power systems due to the introduction of renewable energy sources. There can be large power shortfalls and PV curtailments because of PV forecasting errors. These imbalances might increase when installed PV capacity increases. This study proposes a new scheduling method to reduce power shortfalls and PV curtailments in a PV integrated large power system with a battery energy storage system (BESS). The model of the Kanto area, which is about 30% of Japan’s power usage with 60 GW grid capacity, is used in simulations. The effect of large PV power integration of 50 GW and 100 GW together with large BESS capacity of 100 GWh and 200 GWh has been studied. Mixed integer linear programming technique is used to calculate generator unit commitment and BESS charging and discharging schedules. The simulation results are shown for two months with high and low solar irradiance, which include days with large PV over forecast and under forecast errors. The results reveal that the proposed method eliminates power shortfalls by 100% with the BESS and reduce the PV curtailments by 69.5% and 95.2% for the months with high and low solar irradiance, respectively, when 200 GWh BESS and 100 GW PV power generation are installed.


Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


Sign in / Sign up

Export Citation Format

Share Document