scholarly journals Dispersionless BKP Equation, the Manakov–Santini System and Einstein–Weyl Structures

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1699
Author(s):  
Leonid V. Bogdanov

We construct a map from solutions of the dispersionless BKP (dBKP) equation to solutions of the Manakov–Santini (MS) system. This map defines an Einstein–Weyl structure corresponding to the dBKP equation through the general Lorentzian Einstein–Weyl structure corresponding to the MS system. We give a spectral characterisation of reduction in the MS system, which singles out the image of the dBKP equation solution, and also consider more general reductions of this class. We define the BMS system and extend the map defined above to the map (Miura transformation) of solutions of the BMS system to solutions of the MS system, thus obtaining an Einstein–Weyl structure for the BMS system.

2020 ◽  
Vol 29 (4) ◽  
pp. 444-453
Author(s):  
Mykola Nagirniak

The work presents the equations of the theory of symmetrical plates, resting on one-way, single-layer, two-parameter Vlasov’s subsoil. Two cases of differential equation solution of the plate deflection of thin and medium thickness on the ground substrate were analyzed depending on the size of the integral characteristics UÖD and 6ÖD. The example of loading the circular plate with a Pk load evenly distributed over the edge was considered and shows dimensionless graphs of deflection, bending torques and transverse forces in the plate and in the ground subsoil. The effect of the Poisson’s coefficient of the plate on deflection values and cross-sectional forces was investigated. The Poisson’s number has been shown to have a significant influence on deflection values and bending torque, however shown negligible effect on transverse forces values.


Author(s):  
Yuedong Ma ◽  
Junaid A.B. Zaman ◽  
Rui Shi ◽  
Nabeela Karim ◽  
Sandeep Panikker ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fanning Meng ◽  
Yongyi Gu

In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water (gSW) equation into the complex differential equations by applying traveling wave transform and show that meromorphic solutions of these complex differential equations belong to class W, and then, we get exact solutions of these two (3+1)-dimensional equations.


1972 ◽  
Vol 12 (12) ◽  
pp. 1676-1685 ◽  
Author(s):  
Maurice Klee ◽  
Robert Plonsey

Sign in / Sign up

Export Citation Format

Share Document