scholarly journals The Gamma-Ray Window to Intergalactic Magnetism

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 223
Author(s):  
Rafael Alves Batista ◽  
Andrey Saveliev

One of the most promising ways to probe intergalactic magnetic fields (IGMFs) is through gamma rays produced in electromagnetic cascades initiated by high-energy gamma rays or cosmic rays in the intergalactic space. Because the charged component of the cascade is sensitive to magnetic fields, gamma-ray observations of distant objects such as blazars can be used to constrain IGMF properties. Ground-based and space-borne gamma-ray telescopes deliver spectral, temporal, and angular information of high-energy gamma-ray sources, which carries imprints of the intervening magnetic fields. This provides insights into the nature of the processes that led to the creation of the first magnetic fields and into the phenomena that impacted their evolution. Here we provide a detailed description of how gamma-ray observations can be used to probe cosmic magnetism. We review the current status of this topic and discuss the prospects for measuring IGMFs with the next generation of gamma-ray observatories.

1998 ◽  
Vol 188 ◽  
pp. 125-128
Author(s):  
T. Kifune

The current status of very high energy gamma ray astronomy (in ~ 1 TeV region) is described by using as example results of CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback). Gamma rays at TeV energies, emitted through inverse Compton effect of electrons or π0 decay from proton interaction, provide direct evidence on “hot” non-thermal processes of the Universe, as well as environmental features, such as the strength of magnetic field in the emission region, for the non-thermal processes.


1982 ◽  
Vol 83 (1-2) ◽  
pp. 279-286 ◽  
Author(s):  
R. W. Clay ◽  
P. R. Gerhardy ◽  
A. G. Gregory

2014 ◽  
Vol 10 (S313) ◽  
pp. 27-32
Author(s):  
Elina Lindfors

AbstractThe detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E>100 GeV) range is challenging, mainly because of their steep soft spectra and distance. Nevertheless four FSRQs are now known to be VHE emitters. The detection of the VHE γ-rays has challenged the emission models of these sources. The sources are also found to exhibit very different behavior. I will give an overview of what is known about the VHE emission of these sources and about the multiwavelength signatures that are connected to the VHE gamma-ray emission.


Sign in / Sign up

Export Citation Format

Share Document