charged component
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Yury V. LISAKOV ◽  
Olga V. LAPSHINOVA ◽  
Nikolay M. PUSHKIN ◽  
Viktor P. KONOSHENKO ◽  
Nikolay V. MATVEEV ◽  
...  

The paper presents the results of analysis of electrical measurements performed in the space experiment "Impulse (stage 1)" on the Service module of the ISS RS. This experiment investigated the effects of the interaction of the charged component of the ionosphere to the surface of large KA, which is the ISS. This paper analyses the measurement of quasi-stationary electric field and current leakage, was, respectively, sensors of the vibration type and flat probes from the Complex control electrophysical parameters (CCEP), developed by SPJ MT. To study the dependence of measurements from the ionosphere flow direction to the surface of the ISS RS was installed two sets of sensors with the direction of the angle of "visibility" in the Nadir (towards the Earth) and to "satellite footprint " (against the velocity vector of the ISS). Carried out analysis of common regularities measurements depending on the sun-shadow environment on orbit ISS motions and depending on current geophysical dynamics of the ionosphere. Massive the measurements including more than 170 telemetric sessions were analyzed. More than 11000 hours of measurements current of leakage (or runoff current) and measurements of quasi-stationary electric field with discretization 1s and UT binding to each point were analysed. The data measurements, geophysical and orbital data were collected in an electronic album. It is shown that experimental data correlate with the crossing time of the ISS boundaries known geophysical structures: the noon Meridian, the Main ionospheric failure (MIF), the boundaries diffuse intrusion (BDI), the Equatorial Geomagnetic anomaly (EA). In this regard, despite the specificity of the ISS (the spacecraft super big sizes, the most complex spatial configuration) similar measurements, nevertheless, are quite suitable for monitoring researches of some features of an ionosphere at the level of F2 layer with a temporary scale from 1s and can be used for more detailed study of the geophysical structures and related effects in the ionosphere. In addition, the results obtained can be used for the analysis of disturbances of electromagnetic conditions near the surface of the ISS RS, for monitoring potential and currents of leakage on the surface of the ISS. Keywords: electrophysical measurements, sensors of the vibration type, flat probes, electric field, current leakage, geophysical structure, ionosphere


2021 ◽  
Vol 10 (2) ◽  
pp. 219-226
Author(s):  
Maxim Philippov ◽  
Vladimir Makhmutov ◽  
Galina Bazilevskaya ◽  
Fedor Zagumennov ◽  
Vladimir Fomenko ◽  
...  

Abstract. In this paper, we discuss the influence of meteorological effects on the data of the ground installation CARPET, which is a detector of the charged component of secondary cosmic rays (CRs). This device is designed in the P.N. Lebedev Physical Institute (LPI, Moscow, Russia) and installed at the Dolgoprudny scientific station (Dolgoprudny, Moscow region; 55.56∘ N, 37.3∘ E; geomagnetic cutoff rigidity (Rc = 2.12 GV) in 2017. Based on the data obtained in 2019–2020, the barometric and temperature correction coefficients for the CARPET installation were determined. The barometric coefficient was calculated from the data of the barometric pressure sensor included in the installation. To determine the temperature effect, we used the data of upper-air sounding of the atmosphere obtained by the Federal State Budgetary Institution “Central Aerological Observatory” (CAO), also located in Dolgoprudny. Upper-air sounds launch twice a day and can reach an altitude of more than 30 km.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 223
Author(s):  
Rafael Alves Batista ◽  
Andrey Saveliev

One of the most promising ways to probe intergalactic magnetic fields (IGMFs) is through gamma rays produced in electromagnetic cascades initiated by high-energy gamma rays or cosmic rays in the intergalactic space. Because the charged component of the cascade is sensitive to magnetic fields, gamma-ray observations of distant objects such as blazars can be used to constrain IGMF properties. Ground-based and space-borne gamma-ray telescopes deliver spectral, temporal, and angular information of high-energy gamma-ray sources, which carries imprints of the intervening magnetic fields. This provides insights into the nature of the processes that led to the creation of the first magnetic fields and into the phenomena that impacted their evolution. Here we provide a detailed description of how gamma-ray observations can be used to probe cosmic magnetism. We review the current status of this topic and discuss the prospects for measuring IGMFs with the next generation of gamma-ray observatories.


2021 ◽  
Author(s):  
Maxim Philippov ◽  
Vladimir Makhmutov ◽  
Galina Bazilevskaya ◽  
Fedor Zagumennov ◽  
Vladimir Fomenko ◽  
...  

Abstract. In this paper, we discuss the influence of meteorological effects on the data of the ground installation CARPET, which is a detector of the charged component of secondary cosmic rays (CRs). This device is designed in the P.N. Lebedev Physical Institute (LPI, Moscow, Russia) and installed at the Dolgoprudny scientific station (Dolgoprudny, Moscow region, S55.56 °, W37.3 °; Rc = 2.12 GV) in 2017. Based on the data obtained in 2019–2020, the barometric and temperature coefficients for the CARPET installation were determined. The barometric coefficient was calculated from the data of the barometric pressure sensor included in the installation. To determine the temperature effect, we used the data of upper-air sounding of the atmosphere obtained by the Federal State Budgetary Institution «Central Aerological Observatory» (CAO), also located in Dolgoprudny.


2020 ◽  
Vol 6 (2) ◽  
pp. 105-122
Author(s):  
Roman Vasilyev ◽  
Maksim Artamonov ◽  
Aleksandr Beletsky ◽  
Olga Zorkaltseva ◽  
Evgeniya Komarova ◽  
...  

Studies of the upper atmosphere have to be performed using optical photometric and spectrometric means. Modern devices allow precise photometry of the glow of the night atmosphere — airglow — with high temporal spatial and spectral resolution. As a result, the obtained airglow parameters make it possible to determine the physicochemical properties of the upper atmosphere and observe their variation under the influence of various factors. The National Heliogeophysical Complex, which is being created in Eastern Siberia, is therefore to include a certain set of modern optical instruments. The paper presents the main phenomena that will be investigated by the optical instruments of the complex, provides information on their composition and scientific goals, presents the results of preliminary studies performed using a prototype of the instruments. As a result of the studies, the presence of a significant (about 10 m/sec) vertical wind at various altitudes (100 and 250 km) was established, the importance of taking into account the vertical wind to study the vertical dynamics of the charged component was demonstrated. The long-term dynamics of the vertical wind at an altitude of about 100 km has a pronounced seasonal variations and the absence of diurnal variations, whereas the dynamics of the vertical wind at an altitude of 250 km has a pronounced diurnal variations, which is mostly clearly defined in winter. This suggests the presumed presence of vertical circulation cells at various altitude levels. The possibilities of optical stereoscopy and differential image analysis methods are demonstrated, as applied to the study of fast luminous formations and conducting active ground and space experiments to modify Earth's ionosphere. We report the results of the determination of a three-dimensional picture of a long-lived meteor track with the use of two wide-angle cameras. We propose an algorithm that allows us to get a stereo image of events occurring in the upper atmosphere, recorded simultaneously from different observation points. The joint work of the tools of this complex and the development of cooperation with third-party organizations are shown to be a good enough direction for further study of the vertical dynamics of Earth’s upper atmosphere and space weather phenomena.


2020 ◽  
Vol 6 (2) ◽  
pp. 84-97 ◽  
Author(s):  
Roman Vasilyev ◽  
Maksim Artamonov ◽  
Aleksandr Beletsky ◽  
Olga Zorkaltseva ◽  
Evgeniya Komarova ◽  
...  

Studies of the upper atmosphere have to be performed using optical photometric and spectrometric means. Modern devices allow precise photometry of the glow of the night atmosphere — airglow — with high temporal spatial and spectral resolution. As a result, the obtained airglow parameters make it possible to determine the physicochemical properties of the upper atmosphere and observe their variation under the influence of various factors. The National Heliogeophysical Complex, which is being created in Eastern Siberia, is therefore to include a certain set of modern optical instruments. The paper presents the main phenomena that will be investigated by the optical instruments of the complex, provides information on their composition and scientific goals, presents the results of preliminary studies performed using a prototype of the instruments. As a result of the studies, the presence of a significant (about 10 m/sec) vertical wind at various altitudes (100 and 250 km) was established, the importance of taking into account the vertical wind to study the vertical dynamics of the charged component was demonstrated. The long-term dynamics of the vertical wind at an altitude of about 100 km has a pronounced seasonal variations and the absence of diurnal variations, whereas the dynamics of the vertical wind at an altitude of 250 km has a pronounced diurnal variations, which is mostly clearly defined in winter. This suggests the presumed presence of vertical circulation cells at various altitude levels. The possibilities of optical stereoscopy and differential image analysis methods are demonstrated, as applied to the study of fast luminous formations and conducting active ground and space experiments to modify Earth's ionosphere. We report the results of the determination of a three-dimensional picture of a long-lived meteor track with the use of two wide-angle cameras. We propose an algorithm that allows us to get a stereo image of events occurring in the upper atmosphere, recorded simultaneously from different observation points. The joint work of the tools of this complex and the development of cooperation with third-party organizations are shown to be a good enough direction for further study of the vertical dynamics of Earth’s upper atmosphere and space weather phenomena.


2020 ◽  
Vol 63 (3) ◽  
pp. 388-395
Author(s):  
M. V. Philippov ◽  
V. S. Makhmutov ◽  
Yu. I. Stozhkov ◽  
O. S. Maksumov

2019 ◽  
Vol 127 ◽  
pp. 02001
Author(s):  
Evgenya Mikhalko ◽  
Evgeny Maurchev

The paper presents a research of the different components variations of the secondary cosmic rays (SCR). These are being monitored at the Cosmic Rays Laboratory, PGI, Apatity, using an integrated set based on the SCR basic components detectors. Also, besides stationary equipment, a mobile complex has been developed and made, which consists of a scintillation spectrometer, a charged component detector (CCD) based on the Geiger-Muller counters, and a neutron component detector (Е > 1 MeV) based on helium counters SNM-18. The mobile complex was put into operation in the early 2019. It operates in parallel with the basic equipment, recording SCRs. Small dimensions, effective energy consumption and ability to record data onto flash drives allows this complex to be used in SCR-monitoring in remote places, as well as on ships away at sea.


Sign in / Sign up

Export Citation Format

Share Document