scholarly journals The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection

Viruses ◽  
2015 ◽  
Vol 7 (6) ◽  
pp. 2834-2857 ◽  
Author(s):  
To Fung ◽  
Jaume Torres ◽  
Ding Liu
Viruses ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 150 ◽  
Author(s):  
Srikanta Dash ◽  
Srinivas Chava ◽  
Yucel Aydin ◽  
Partha Chandra ◽  
Pauline Ferraris ◽  
...  

Biomaterials ◽  
2021 ◽  
pp. 120757
Author(s):  
Yingying Shi ◽  
Yichao Lu ◽  
Chunqi Zhu ◽  
Zhenyu Luo ◽  
Xiang Li ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Katharina F. Witting ◽  
Monique P.C. Mulder

Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Erik A Blackwood ◽  
Christopher C Glembotski

Rationale: Atrial natriuretic peptide (ANP) is stored in the heart in large dense core granules of atrial myocytes as a biologically inactive precursor, pro-ANP. Hemodynamic stress and atrial stretch stimulate coordinate secretion and proteolytic cleavage of pro-ANP to its bioactive form, ANP, which promotes renal salt excretion and vasodilation, which, together contribute to decreasing blood pressure. While the ATF6 branch of the ER stress response has been studied in ventricular tissue mouse models of myocardial ischemia and pathological hypertrophy, roles for ATF6 and ER stress on the endocrine function of atrial myocytes have not been studied. Objective/Methods: To address this gap in our knowledge, we knocked down ATF6 in primary cultured neonatal rat atrial myocytes (NRAMs) using a chemical inhibitor of the proteolytic cleavage site enabling ATF6 activation and siRNA and measured ANP expression and secretion basally and in response to alpha- adrenergic agonist stimulation using phenylephrine. We also compared the ANP secretion from wild- type mice and ATF6 knockout mice in an ex vivo Langendorff model of the isolated perfused heart. Results: ATF6 knockdown in NRAMs significantly impaired basal and phenylephrine-stimulated ANP secretion. ATF6 knockout mice displayed lower levels of ANP in atrial tissue at baseline as well as after phenylephrine treatment. Similarly, in the ex vivo isolated perfused heart model, less ANP was detected in effluent of ATF6 knockout hearts compared to wild-type hearts. Conclusions: The ATF6 branch of the ER stress response is necessary for efficient co-secretional processing of pro-ANP to ANP and for agonist-stimulated ANP secretion from atrial myocytes. As ANP is secreted in a regulated manner in response to a stimulus and pro-ANP is synthesized and packaged through the classical secretory pathway, we posit that ATF6 is required for adequate expression, folding, trafficking, processing and secretion of biologically active ANP from the endocrine heart.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Marin Jane McBride ◽  
Kristina Durham ◽  
Bernardo L Trigatti

Interleukin-15 (IL-15) is a pleotropic cytokine that has a profound effect on the proliferation, survival and differentiation of many distinct cell types. The IL-15 receptor complex has 3 subunits: the unique receptor chain IL-15 receptor alpha (IL-15Rα), and two receptor chains shared with interleukin-2 (IL-2) and/or other cytokines, referred to as IL-2 receptor beta (IL-2Rβ) and IL-2 receptor gamma/gamma common chain (IL-2Rγ/γc), respectively. To our knowledge, this is the first study to examine the effects of IL-15 in immortalized human cardiomyocytes. Data collected by RT-PCR shows mRNA expression of IL-15Rα, IL-2Rβ and IL-2 Rγ/γc in these cells. Additionally, western blotting for IL-15Rα, IL-2Rβ and IL-2 Rγ/γc confirms the presence of all three IL-15 receptors. Early experiments examining the effect of IL-15 on cardiomyocyte cell survival show a statistically significant protective effect of IL-15 on the survival of cells exposed to tunicamycin, a pharamacological endoplasmic reticulum (ER) stress inducing agent. These findings suggest that IL-15 signaling may be an important cardioprotective pathway that is involved in the cardiac ER stress response. As ER stress is a major component of multiple different cardiac pathologies, such as myocardial infarction, heart failure and diabetes, uncovering the molecular mechanism by which IL-15 protects the heart will allow for deeper understanding of the cardiac ER stress response.


2020 ◽  
Vol 25 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Wenjuan Song ◽  
Le Sheng ◽  
Fanghui Chen ◽  
Yu Tian ◽  
Lian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document