scholarly journals A Stochastic Optimization Model for Agricultural Irrigation Water Allocation Based on the Field Water Cycle

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1031 ◽  
Author(s):  
Zehao Yan ◽  
Mo Li

Agricultural water scarcity is a global problem and this reinforces the need for optimal allocation of irrigation water resources. However, decision makers are challenged by the complexity of fluctuating stream condition and irrigation quota as well as the dynamic changes of the field water cycle process, which make optimal allocation more complex. A two-stage chance-constrained programming model with random parameters in the left- and right-hand sides of constraints considering field water cycle process has been developed for agricultural irrigation water allocation. The model is capable of generating reasonable irrigation allocation strategies considering water transformation among crop evapotranspiration, precipitation, irrigation, soil water content, and deep percolation. Moreover, it can deal with randomness in both the right-hand side and the left-hand side of constraints to generate schemes under different flow levels and constraint-violation risk levels, which are informative for decision makers. The Yingke irrigation district in the middle reaches of the Heihe River basin, northwest China, was used to test the developed model. Tradeoffs among different crops in different time periods under different flow levels, and dynamic changes of soil moisture and deep percolation were analyzed. Scenarios with different violating probabilities were conducted to gain insight into the sensitivity of irrigation water allocation strategies on water supply and irrigation quota. The performed analysis indicated that the proposed model can efficiently optimize agricultural irrigation water for an irrigation district with water scarcity in a stochastic environment.

Water ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 251 ◽  
Author(s):  
Haoxin Li ◽  
Dongguo Shao ◽  
Baoli Xu ◽  
Shu Chen ◽  
Wenquan Gu ◽  
...  

2012 ◽  
Vol 26 (5) ◽  
pp. 1183-1200 ◽  
Author(s):  
Lei Jin ◽  
Guohe Huang ◽  
Yurui Fan ◽  
Xianghui Nie ◽  
Guanhui Cheng

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1094
Author(s):  
Yan Zhang ◽  
Fan Zhang ◽  
Hua Zhu ◽  
Ping Guo

In this study, an interval linear fractional bi-level programming (ILFBP) model was developed for managing irrigation-water resources under uncertainty. The ILFBP can fully address system fairness, uncertainties, and the leader–follower relationship of decision makers in the optimization process, which can better reflect the complexity of real decision-making process and help formulate reasonable water policies. An interactive fuzzy coordination algorithm based on satisfaction degree was introduced to solve the ILFBP model. In order to evaluate the applicability of optimization schemes, the interval analytic hierarchy process (IAHP) and the interval technique for order preference by similarity to an ideal solution (TOPSIS) method were integrated as IAHP-TOPSIS. To verify its validity, the developed optimization-evaluation framework was applied to an irrigation water management case study in the middle reaches of the Shiyang River Basin, located in the northwest China. The ILFBP model results show that the total water allocation is [6.73, 7.37] × 108 m3, saving nearly 0.9 × 108 m3 more than the current situation. The benefit per unit of water is [2.38, 2.95] yuan/m3, nearly 0.4 yuan/m3 more than the status quo, and the Gini coefficient is within a reasonable range of [0.35, 0.38]. The ILFBP model can well balance economic benefits and system fairness. Through the evaluation bases on IAHP-TOPSIS, the results of ILFBP show better water allocation effects and applicability than the other two models in this study area. Furthermore, due to various characteristics such as geographical location, population and area, there are three irrigation districts, Xiying, Donghe, and Qinghe, showing higher importance than others when considering regional water allocation. These findings can provide useful information for limited water resource managers and help decision makers determine effective alternatives of water resource planning under uncertainty.


Sign in / Sign up

Export Citation Format

Share Document