scholarly journals Sea Water Contamination in the Vicinity of the Italian Minor Islands Caused by Microplastic Pollution

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1108 ◽  
Author(s):  
Giuseppe de Lucia ◽  
Alvise Vianello ◽  
Andrea Camedda ◽  
Danilo Vani ◽  
Paolo Tomassetti ◽  
...  

The abundance and distribution of microplastics (MP) were evaluated in six “clean” sites (Italian minor islands) and in two “polluted” areas (near the mouth of two major Italian rivers). Samples of MP, plankton and persistent organic pollutants (POPs) were collected using a manta trawl (MA) and a plankton net (WP2), both lined with a 333 µm mesh net. MP have been confirmed to be ubiquitous since they were found at each site, showing an average density of 0.3 ± 0.04 items/m3 (values ranged from 0.641 to 0.119 ). When comparing the clean sites with the polluted ones, a significantly higher value of MP was found near the river mouths. The most common types of MP were synthetic filaments (50.24%), followed by fragments (30.39%), thin plastic films (16.98%) and spheres (2.39%). Infrared spectroscopy analysis highlighted that the most abundant polymers were polyethylene (PE-26%), polypropylene (PP-11%), polyethylene-terephthalate/polyester (PET/PEST-8%) and ethylene-vinyl-acetate (EVA-5%). Polychlorinated biphenyls and organochlorine pesticides were detected in all the samples with a high variability among sites and depths. This study adds to the existing information on the distribution of contaminants across the Mediterranean Sea, and is useful to policy makers who wish to implement effective measures to reduce MP pollution.

2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Suhartati M. Natsir

Foraminifera are generally live in sea water with various sizes. These organisms consist of planktonic and benthic foraminifera. Geological activity on plutonic and volcanic with vomiting magma is transpiring on, and then affects sedimentation and foraminiferal abundance of Ambon Bay. The study was determined to study the abundance and distribution of foraminifera based on the sediment characteristic of Ambon Bay. Sample collected in 2007 of Ambon Bay showed that only 29 samples of 50 samples containing foraminifera. The collected sediments have 86 species of foraminifera, consisting 61 species of benthic foraminifera and 25 species of planktonic foraminifera. The dominant benthic foraminifera in the surface sediment of Ambon bay were Amphistegina lessonii, Ammoniabeccarii,Elphidium craticulatum,Operculina ammonoides and Quinqueloculina parkery. The planktonic foraminifera that were frequently collected from the bay were Globorotalia tumida, Globoquadrina pseudofoliata, Globigerinoides pseudofoliata, Globigerinoides cyclostomus dan Pulleniatina finalis. Generally, the species dwelled as abundant on substrate sand, whereas the areas within substrate mud have no foraminifera lie on them. Keywords: Foraminifera, Abundance, Sediment, Ambon Bay


2008 ◽  
Vol 47 (8) ◽  
pp. 6431-6436 ◽  
Author(s):  
Kazunari Adachi ◽  
Tsuyoshi Takahashi ◽  
Kenichi Kamehashi ◽  
Kazumi Watanabe ◽  
Kenta Uchiyama ◽  
...  

1993 ◽  
Vol 31 (3) ◽  
pp. 179-198 ◽  
Author(s):  
Philip J. Whitney ◽  
Clare H. Swaffield ◽  
Andrew J. Graffham

1975 ◽  
Vol 14 (70) ◽  
pp. 137-154 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Seelye Martin

Laboratory experiments on the growth of sea ice in a very thin plastic tank filled with salt water, cooled from above and insulated with thermopane, clearly show the formation and development of brine drainage channels. The sea-water freezing cell is 0.3 cm thick by 35 cm wide by 50 cm deep; the thermopane insulation permits the ice interior to be photographed. Experimentally, we observe that vertical channels with diameters of 1 to 3 mm and associated smaller feeder channels extend throughout the ice sheet. Close examination of the brine channels show that their diameter at the ice-water interface is much narrower than higher up in the ice, so that the channel has a “neck” at the interface. Further, oscillations occur in the brine channels, in that brine flows out of the channel followed by a flow of sea-water up into the channel. Theoretically, a qualitative theory based on the difference in pressure head between the brine inside the ice and the sea-water provides a consistent explanation for the formation of the channels, and the onset of a convective instability explains the existence of the neck. Finally, an analysis based on the presence of the brine-channel neck provides an explanation for the observed oscillations.


1983 ◽  
Vol 105 (2) ◽  
pp. 149-156 ◽  
Author(s):  
H. Cheng ◽  
R. B. Bannerot

A program is described for the controlled degradation and evaluation of thin plastic film samples in a set of parallel (in time) exposures. The intent of the various exposures is to separate the effects of identifiable degradation mechanisms associated with each material’s use as a solar collector cover. The mechanisms considered were those due to: (i) environment less solar irradiation (chemical, abrasion, humidity, etc.); (ii) environment including solar irradiation; (iii) thermal effects and (iv) mechanical effects. The procedures described in the program are illustrated by presenting the details for the evaluation of two commonly used plastic films.


1950 ◽  
Vol 21 (5) ◽  
pp. 491-492 ◽  
Author(s):  
Joses J. L. Chen

1971 ◽  
Vol 4 (12) ◽  
pp. 1073-1074 ◽  
Author(s):  
B E Woodgate
Keyword(s):  

1975 ◽  
Vol 14 (70) ◽  
pp. 137-154 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Seelye Martin

Laboratory experiments on the growth of sea ice in a very thin plastic tank filled with salt water, cooled from above and insulated with thermopane, clearly show the formation and development of brine drainage channels. The sea-water freezing cell is 0.3 cm thick by 35 cm wide by 50 cm deep; the thermopane insulation permits the ice interior to be photographed. Experimentally, we observe that vertical channels with diameters of 1 to 3 mm and associated smaller feeder channels extend throughout the ice sheet. Close examination of the brine channels show that their diameter at the ice-water interface is much narrower than higher up in the ice, so that the channel has a “neck” at the interface. Further, oscillations occur in the brine channels, in that brine flows out of the channel followed by a flow of sea-water up into the channel. Theoretically, a qualitative theory based on the difference in pressure head between the brine inside the ice and the sea-water provides a consistent explanation for the formation of the channels, and the onset of a convective instability explains the existence of the neck. Finally, an analysis based on the presence of the brine-channel neck provides an explanation for the observed oscillations.


Sign in / Sign up

Export Citation Format

Share Document