brine channel
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2016 ◽  
Vol 62 (231) ◽  
pp. 1-17 ◽  
Author(s):  
C. A. MIDDLETON ◽  
C. THOMAS ◽  
A. DE WIT ◽  
J.-L. TISON

ABSTRACTTwo non-invasive optical Schlieren methods have been adapted to visualize brine channel development and convective processes in experimentally grown sea ice obtained when a NaCl aqueous solution is cooled from above in a quasi-two-dimensional Hele–Shaw cell. The two different visualization methods, i.e. traditional and synthetic Schlieren optical imaging, produce high spatial resolution images of transport processes during ice growth, without any external perturbation. These images allow observations of the flow dynamics simultaneously within the ice layer, around the ice/water interface, and in the liquid water layer, revealing connections between the processes occurring within the two phases. Results from these methods show that desalination of the growing ice layer occurs by two concurrent, yet independent, mechanisms: (1) boundary layer convection persisting throughout the ice growth period, with short fingers present just below the ice/water interface, and (2) gravity-driven drainage from the brine channels producing deep penetrating convective streamers, which appear after a given time from the beginning of ice growth. The improved visualization and qualitative characterization of these processes show that Schlieren optical methods have exciting potential applications for future study of convective processes during sea-ice growth.


2001 ◽  
Vol 33 ◽  
pp. 13-20 ◽  
Author(s):  
J.-L. Tison ◽  
V. Verbeke

AbstractThis work investigates the possibility of brine-channel formation and development during the freezing of granular ice from a loose frazil-ice suspension in an NaCl solution at set-water concentration. Three experiments were performed at various constant growth rates in a purpose-built vessel with computer-controlled thermal driving. High-resolution chlorinity measurements are used as a proxy for the bulk salinity of the samples. These show clear brine-segregation processes in the ice, with very high salinity gradients for the fast (10 mm h−1) to medium (2 mm h−1) freezing rates, provided that a suitable sampling scale is adopted. Weak segregation was found at the low freezing rate (0.5 mm h−1). The spatial distribution of the bulk salinity fits the visual appearance of brine channels in the ice adequately, in both horizontal and vertical sections. In a similar way to columnar-congelation sea ice, the number of brine channels significantly decreases with growth rate, but the density of channels is systematically lower in the granular ice than that found at equivalent freezing rates in the columnar ice. This is attributed to the lower geometrical constraints on brine transport in the granular medium. Contrasts between brine-channel geometry and density at different growth rates are discussed in light of the "mushy-layer" concept adapted to sea-ice growth from the solidification of alloys


1999 ◽  
Vol 104 (C7) ◽  
pp. 15859-15871 ◽  
Author(s):  
Finlo Cottier ◽  
H. Eicken ◽  
P. Wadhams

1979 ◽  
Vol 22 (88) ◽  
pp. 473-502 ◽  
Author(s):  
Seelye Martin

AbstractFrom field observations this paper describes the growth and development of first-year sea ice and its interaction with petroleum. In particular, when sea ice initially forms, there is an upward salt transport so that the ice surface has a highly saline layer, regardless of whether the initial ice is frazil, columnar, or slush ice. When the ice warms in the spring, because of the eutectic condition, the surface salt liquifies and drains through the ice, leading to the formation of top-to-bottom brine channels and void spaces in the upper part of the ice. If oil is released beneath winter ice, then the oil becomes entrained in thin lenses within the ice. In the spring, this oil flows up to the surface through the newly-opened brine channels and distributes itself within the brine-channel feeder systems, on the ice surface, and in horizontal layers in the upper part of the ice. The paper shows that these layers probably form from the interaction of the brine drainage with the percolation of melt water from surface snow down into the ice and the rise of the oil from below. Finally in the summer, the oil on the surface leads to melt-pond formation. The solar energy absorbed by the oil on the surface of these melt ponds eventually causes the melt pond to melt through the ice, and the oil is again released into the ocean.


1979 ◽  
Vol 22 (88) ◽  
pp. 473-502 ◽  
Author(s):  
Seelye Martin

AbstractFrom field observations this paper describes the growth and development of first-year sea ice and its interaction with petroleum. In particular, when sea ice initially forms, there is an upward salt transport so that the ice surface has a highly saline layer, regardless of whether the initial ice is frazil, columnar, or slush ice. When the ice warms in the spring, because of the eutectic condition, the surface salt liquifies and drains through the ice, leading to the formation of top-to-bottom brine channels and void spaces in the upper part of the ice. If oil is released beneath winter ice, then the oil becomes entrained in thin lenses within the ice. In the spring, this oil flows up to the surface through the newly-opened brine channels and distributes itself within the brine-channel feeder systems, on the ice surface, and in horizontal layers in the upper part of the ice. The paper shows that these layers probably form from the interaction of the brine drainage with the percolation of melt water from surface snow down into the ice and the rise of the oil from below. Finally in the summer, the oil on the surface leads to melt-pond formation. The solar energy absorbed by the oil on the surface of these melt ponds eventually causes the melt pond to melt through the ice, and the oil is again released into the ocean.


1975 ◽  
Vol 14 (70) ◽  
pp. 137-154 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Seelye Martin

Laboratory experiments on the growth of sea ice in a very thin plastic tank filled with salt water, cooled from above and insulated with thermopane, clearly show the formation and development of brine drainage channels. The sea-water freezing cell is 0.3 cm thick by 35 cm wide by 50 cm deep; the thermopane insulation permits the ice interior to be photographed. Experimentally, we observe that vertical channels with diameters of 1 to 3 mm and associated smaller feeder channels extend throughout the ice sheet. Close examination of the brine channels show that their diameter at the ice-water interface is much narrower than higher up in the ice, so that the channel has a “neck” at the interface. Further, oscillations occur in the brine channels, in that brine flows out of the channel followed by a flow of sea-water up into the channel. Theoretically, a qualitative theory based on the difference in pressure head between the brine inside the ice and the sea-water provides a consistent explanation for the formation of the channels, and the onset of a convective instability explains the existence of the neck. Finally, an analysis based on the presence of the brine-channel neck provides an explanation for the observed oscillations.


1975 ◽  
Vol 14 (70) ◽  
pp. 137-154 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Seelye Martin

Laboratory experiments on the growth of sea ice in a very thin plastic tank filled with salt water, cooled from above and insulated with thermopane, clearly show the formation and development of brine drainage channels. The sea-water freezing cell is 0.3 cm thick by 35 cm wide by 50 cm deep; the thermopane insulation permits the ice interior to be photographed. Experimentally, we observe that vertical channels with diameters of 1 to 3 mm and associated smaller feeder channels extend throughout the ice sheet. Close examination of the brine channels show that their diameter at the ice-water interface is much narrower than higher up in the ice, so that the channel has a “neck” at the interface. Further, oscillations occur in the brine channels, in that brine flows out of the channel followed by a flow of sea-water up into the channel. Theoretically, a qualitative theory based on the difference in pressure head between the brine inside the ice and the sea-water provides a consistent explanation for the formation of the channels, and the onset of a convective instability explains the existence of the neck. Finally, an analysis based on the presence of the brine-channel neck provides an explanation for the observed oscillations.


Sign in / Sign up

Export Citation Format

Share Document