scholarly journals River Runoff Modelling and Hydrological Drought Assessment Based on High-Resolution Brightness Temperatures in Mainland China

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2429
Author(s):  
Xing Qu ◽  
Ziyue Zeng ◽  
Zhe Yuan ◽  
Junjun Huo ◽  
Yongqiang Wang ◽  
...  

Under the background of global climate change, drought is causing devastating impacts on the balance of the regional water resources system. Hydrological drought assessment is critical for drought prevention and water resources management. However, in China to assess hydrological drought at national scale is still challenging basically because of the difficulty of obtaining runoff data. In this study, we used the state-of-the-art passive microwave remote sensing techniques in river runoff modelling and thus assessed hydrological drought in Mainland China in 1996–2016. Specifically, 79 typical hydrological stations in 9 major basins were selected to simulate river runoff using the M/C signal method based on a high-resolution passive microwave bright temperature dataset. The standardized runoff index (SRI) was calculated for the spatial and temporal patterns of hydrological drought. Results show that passive microwave remote sensing can provide an effective way for runoff modelling as 92.4% and 59.5% of the selected 79 stations had the Pearson correlation coefficient (R) and the Nash-Sutcliffe efficiency coefficient (NS) scores greater than 0.5. Especially in areas located on Qinghai-Tibet Plateau in the Inland and the Southwest River Basin, the performance of the M/C signal method is quite outstanding. Further analysis indicates that stations with small rivers in the plateau areas with sparse vegetation tend to have better simulated results, which are usually located in drought-prone regions. Hydrological drought assessment shows that 30 out of the 79 stations present significant increasing trends in SRI-3 and 18 indicate significant decreasing trends. The duration and severity of droughts in the non-permanent dry areas of the Hai River Basin, the middle reaches of the Yangtze River Basin and the Southwest of China were found out to be more frequent and severe than other regions. This work can provide guidance for extending the applications of remote sensing data in drought assessment and other hydrological research.

2013 ◽  
Vol 433-435 ◽  
pp. 1813-1816
Author(s):  
Jing Wen Xu ◽  
Peng Wang ◽  
Jun Fang Zhao ◽  
Shuang Liu

On the basis of previous work, this paper aims to build several proper drought indices based on the basic computation for the band information of passive microwave remote sensing AMSR-E data in Huaihe river basin. Compared with measured soil moisture, optimal drought indices have been selected to explore the spatio-temporal variation laws of drought conditions and its impact factors. The results indicate that there are satisfactory negative correlations between MPDIs (Microwave Polarization Difference Index) and observed soil moisture on the whole, which means the more negative the index is, the more serious the drought will be. Besides, MPDIs at frequency 69GHz and 187GHz calculated by AMSR-E brightness temperature data are much closer to the variation trend of soil moisture than those obtained from other bands.


2013 ◽  
Vol 397-400 ◽  
pp. 2503-2506
Author(s):  
Rui Wang ◽  
Jing Wen Xu ◽  
Dan Wang ◽  
Xing Mei Xie ◽  
Peng Wang

On the basis of previous work, this paper aims to build several proper drought indices based on passive microwave remote sensing AMSR-E data in Huaihe River Basin. Compared with measured soil moisture, optimal drought indices have been selected to explore the spatio-temporal variation of drought conditions. The results indicate that there are satisfactory negative correlations between MPDIs (Microwave Polarization Index) and observed soil moisture. Moreover, MPDIs calculated by bands of 69GHz and 187GHz are much closer to variation trend of soil moisture than those obtained by other bands.


Sign in / Sign up

Export Citation Format

Share Document