Application of loudness level to temporally varying sounds

2021 ◽  
Vol 263 (6) ◽  
pp. 140-151
Author(s):  
Sonoko Kuwano ◽  
Seiichiro Namba

Most of the environmental noises are temporally varying and include various frequency components. Various methods for evaluating the environmental noises have been proposed. Among them, the method for calculating loudness level was first standardized in 1975 as ISO 532, including Stevens' and Zwicker's methods. Unfortunately, these methods can only be applied to steady state sounds. On the other hand, Aeq (Equivalent Continuous A-weight Sound Pressure Level) is standardized for the evaluation of level fluctuating environmental sounds as ISO 1996. In , the energy mean and A-weighting are used for averaging temporal fluctuation and frequency weighting, respectively. The present authors with their colleagues have conducted many psychological experiments using artificial sounds and actual sounds since 1970's and have being introduced that p (Loudness-based Method), which is a combination of ISO 532 for frequency weighting and ISO 1996 for temporal level fluctuation, is a good method for evaluating various kinds of environmental sounds. ISO 532-1 (Zwicker's method) has been revised including the temporal fluctuation into consideration in 2017, in which p has been adopted as a note. The merit of p will be introduced in this paper presenting many examples.

Author(s):  
Yutaka Ohta ◽  
Eisuke Outa

A hybrid-type noise control method is applied to fundamental and higher-order blade-passing frequency components, abbreviated to BPF components, radiated from a centrifugal blower. An active cancellation of the BPF noise source is conducted based on a detailed investigation of the noise source distribution by using correlation analysis. The sound pressure level of 2nd- and/or 3rd-order BPF can be reduced by more than 15 decibels and discrete tones almost eliminate from the power spectra of blower-radiated noise. On the other hand, the sound pressure level of the fundamental BPF is difficult to reduce effectively by the active cancellation method because of the large amplitude of the noise source fluctuation. However, the fundamental BPF is largely influenced by the frequency-response characteristics of the noise transmission passage, and is passively reduced by appropriate adjusting of the inlet duct length. Simultaneous reduction of BPF noise, therefore, can be easily made possible by applying passive and active control methods on the fundamental and higher-order BPF noise, respectively. We also discuss the distribution pattern of BPF noise sources by numerical simulation of flow fields around the scroll cutoff.


2018 ◽  
Vol 37 (2) ◽  
pp. 373-384
Author(s):  
Hiroshi Sato ◽  
Jongkwan Ryu ◽  
Kenji Kurakata

An on-site system for measuring low-frequency noise and complainant's responses to the low-frequency noise was developed to confirm whether the complainant suffer from the environmental noise with low-frequency components. The system suggests several methods to find the dominant frequency and major sound pressure level spectrum of the noise causing annoyance. This method can also yield a quantified relationship (correlation coefficient and percentage of response to the noise) between physical noise properties and the complainant’s responses. The advantage of this system is that it can easily find the relationship between the complainant’s response to the acoustic event of the houses and the physical characteristics of the low-frequency noise, such as the time trends and frequency characteristics. This paper describes the developed system and provides an example of the measurement results.


2012 ◽  
Vol 23 (09) ◽  
pp. 733-750
Author(s):  
Karrie LaRae Recker ◽  
Tao Zhang ◽  
Weili Lin

Background: Sound pressure-based real ear measurements are considered best practice for ensuring audibility among individuals fitting hearing aids. The accuracy of current methods is generally considered clinically acceptable for frequencies up to about 4 kHz. Recent interest in the potential benefits of higher frequencies has brought about a need for an improved, and clinically feasible, method of ensuring audibility for higher frequencies. Purpose: To determine whether (and the extent to which) average correction factors could be used to improve the estimated high-frequency sound pressure level (SPL) near the tympanic membrane (TM). Research Design: For each participant, real ear measurements were made along the ear canal, at 2–16 mm from the TM, in 2-mm increments. Custom in-ear monitors were used to present a stimulus with frequency components up to 16 kHz. Study Sample: Twenty adults with normal middle-ear function participated in this study. Intervention: Two methods of creating and implementing correction factors were tested. Data Collection and Analysis: For Method 1, correction factors were generated by normalizing all of the measured responses along the ear canal to the 2-mm response. From each normalized response, the frequency of the pressure minimum was determined. This frequency was used to estimate the distance to the TM, based on the ¼ wavelength of that frequency. All of the normalized responses with similar estimated distances to the TM were grouped and averaged. The inverse of these responses served as correction factors. To apply the correction factors, the only required information was the frequency of the pressure minimum. Method 2 attempted to, at least partially, account for individual differences in TM impedance, by taking into consideration the frequency and the width of the pressure minimum. Because of the strong correlation between a pressure minimum's width and depth, this method effectively resulted in a group of average normalized responses with different pressure-minimum depths. The inverse of these responses served as correction factors. To apply the correction factors, it was necessary to know both the frequency and the width of the pressure minimum. For both methods, the correction factors were generated using measurements from one group of ten individuals and verified using measurements from a second group of ten individuals. Results: Applying the correction factors resulted in significant improvements in the estimated SPL near the TM for both methods. Method 2 had the best accuracy. For frequencies up to 10 kHz, 95% of measurements had <8 dB of error, which is comparable to the accuracy of real ear measurement methods that are currently used clinically below 4 kHz. Conclusions: Average correction factors can be successfully applied to measurements made along the ear canals of otologically healthy adults, to improve the accuracy of the estimated SPL near the TM in the high frequencies. Further testing is necessary to determine whether these correction factors are appropriate for pediatrics or individuals with conductive hearing losses.


1961 ◽  
Vol 107 (450) ◽  
pp. 839-844 ◽  
Author(s):  
Stanley Smith ◽  
H. Thakurdas ◽  
T. G. G. Lawes

The early investigators in the field of perceptual isolation were at McGill University, especially Bexton et al. (1954). Since then there have been many subsequent works and papers on the subject. In general, published results of this type of experiment can be divided into two groups. Sometimes marked sequelae to sensory deprivation have been described (Bexton et al., 1954 and Goldberger et al., 1958). Such disturbances included thinking, imagery and time appreciation, together with delusional and hallucinatory phenomena. On the other hand, at Princeton University, Vernon et al. (1956), under very carefully controlled experimental conditions, found virtually no sequelae. A paper published from this hospital (Smith and Lewty, 1959) described a silent room which was designed, constructed and standardized to a mean sound pressure level difference of 80 decibels. (Measurements made at octave intervals from 80-10,000 c./sec.) In this particular room 20 volunteers spent varying periods from 5 hours 50 minutes to 92 hours 20 minutes under conditions of partial and complete sensory deprivation. We used a room so as to mitigate the physical effects of reduced somatic activity and fur gloves were used instead of the more common cardboard cylinders, which after a period of time produce a great deal of skin irritation and indeed abrasions, and introduce a great deal of unnecessary complications into a study of pure sensory deprivation.


2014 ◽  
Vol 912-914 ◽  
pp. 1485-1488
Author(s):  
Hong Liu ◽  
Guo Zhu Zhao

An array which possess more array element number and whose frequency of the drive signal can be as large as possible in a range, directivity will be more preferable. On the other hand, when the structure of the sound radiating surface of the transducer or array layout is symmetrical, the corresponding directivity pattern will be symmetrical. In order to test transducer directivity, two methods are designed. The one is to measure the ultrasonic sound pressure level by instruments. The sound pressure level is measured at multiple points to deduce the directivity angle of the acoustic transducer array. The beam width of the 3×3 array is about at 23kHz, and the directivity acute angle is about 10°; higher frequencies will lead to the side lobes, but it can be negligible when compared to the main lobe. The other method is using the frequency analyzer to test transducer directivity in a silencer chamber. The sound pressure level can be read out from frequency response diagrams. The angle between the sound pressure value that decreasing 3db from the max value 111.7db and the max value is about 11°. So the directivity acute angle is about 11°. It should be noticed that, as the directivity diagram can not be directly attributed, there is some deviation in the conclusion.


1992 ◽  
Vol 35 (2) ◽  
pp. 436-442 ◽  
Author(s):  
John P. Madden ◽  
Lawrence L. Feth

This study compares the temporal resolution of frequency-modulated sinusoids by normal-hearing and hearing-impaired subjects in a discrimination task. One signal increased linearly by 200 Hz in 50 msec. The other was identical except that its trajectory followed a series of discrete steps. Center frequencies were 500, 1000, 2000, and 4000 Hz. As the number of steps was increased, the duration of the individual steps decreased, and the subjects’ discrimination performance monotonically decreased to chance. It was hypothesized that the listeners could not temporally resolve the trajectory of the step signals at short step durations. At equal sensation levels, and at equal sound pressure levels, temporal resolution was significantly reduced for the impaired subjects. The difference between groups was smaller in the equal sound pressure level condition. Performance was much poorer at 4000 Hz than at the other test frequencies in all conditions because of poorer frequency discrimination at that frequency.


2018 ◽  
Vol 61 (3) ◽  
pp. 441-461 ◽  
Author(s):  
Jan G. Švec ◽  
Svante Granqvist

Purpose Sound pressure level (SPL) measurement of voice and speech is often considered a trivial matter, but the measured levels are often reported incorrectly or incompletely, making them difficult to compare among various studies. This article aims at explaining the fundamental principles behind these measurements and providing guidelines to improve their accuracy and reproducibility. Method Basic information is put together from standards, technical, voice and speech literature, and practical experience of the authors and is explained for nontechnical readers. Results Variation of SPL with distance, sound level meters and their accuracy, frequency and time weightings, and background noise topics are reviewed. Several calibration procedures for SPL measurements are described for stand-mounted and head-mounted microphones. Conclusions SPL of voice and speech should be reported together with the mouth-to-microphone distance so that the levels can be related to vocal power. Sound level measurement settings (i.e., frequency weighting and time weighting/averaging) should always be specified. Classified sound level meters should be used to assure measurement accuracy. Head-mounted microphones placed at the proximity of the mouth improve signal-to-noise ratio and can be taken advantage of for voice SPL measurements when calibrated. Background noise levels should be reported besides the sound levels of voice and speech.


2006 ◽  
Vol 67 (7) ◽  
pp. 720-730 ◽  
Author(s):  
Mutsumi Ishibashi ◽  
Anna Preis ◽  
Fumiaki Satoh ◽  
Hideki Tachibana

Sign in / Sign up

Export Citation Format

Share Document