Numerical Study of Airfoil Tonal Noise Reduction using Segmented Elastic Panel Configuration

2021 ◽  
Vol 263 (4) ◽  
pp. 2916-2929
Author(s):  
Arif Muhammad Irsalan ◽  
Garret C. Y. Lam ◽  
Randolph C. K. Leung

In this paper, a novel passive method for airfoil tonal noise reduction is proposed using a configuration of two segmented elastic panels mounted on the airfoil. Numerical investigation using perturbation evolution method is carried out at a low Reynolds number based on airfoil chord of 5x10 and an angle of attack of 5. The passive method of employing a single panel has shown promising tonal noise reduction capabilities where the resonating panel located just ahead of the sharp growth of boundary layer instability within the airfoil separation bubble provided the strongest reduction of instabilities and noise reduction up to 3 dB has been achieved. The idea is extended in the present study by employing a two-panel configuration based on the localized flow characteristics over the airfoil surface. Five different panel configurations are designed and their effectiveness in terms of tonal noise reduction is evaluated and compared with baseline configuration. The azimuth and spectral analyses indicate the different extent of noise reduction for each configuration and even noise amplification in one of them. A significant noise reduction up to 8 dB is observed for the optimum configuration indicating the effectiveness of this novel method for devices operating at low Reynolds number.

Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


Author(s):  
Michael J. Collison ◽  
Peter X. L. Harley ◽  
Domenico di Cugno

Low speed, small scale turbomachinery operates at low Reynolds number with transition phenomena occurring. In small consumer product applications, high efficiency and low noise are key performance metrics. Transition behaviour will partly determine the state of the boundary layer at the trailing edge; whether it is laminar, turbulent or separated impacts aerodynamic and acoustic performance. This study aimed to evaluate a commercially available CFD transition model on a low Reynolds number Eppler E387 airfoil and identify whether it was able to correctly model the boundary layer transition, and at what expense. CFD was carried out utilising the ANSYS Shear Stress Transport (SST) k-ω γ-Reθ transition model. The CFD progressed from 2D in Fluent v150, through to single cell thickness 3D (pseudo 2D) in CFX v172. An Eppler E387 low Reynolds number airfoil, for which experimental data was readily available from literature at Re = 200,000 was used as the validation case for the CFD, with results computed at numerous incidence angles and mesh densities. Additionally, experimental surface oil flow visualisation was undertaken in a wind tunnel using a scaled E387 airfoil for the zero incidence case at Re = 50,000. The flow visualisation exhibited the expected key features of transition in the breakdown of the boundary layer from laminar to turbulent, and was used as a validation case for the CFD transition model. The comparison between the results from the CFD transition model and the experimental data from literature suggested varying levels of agreement based on the mesh density and CFD solver in the starting location of the laminar separation bubble, with higher disparity for the position of the reattachment point. Whether 2D or 3D, the prediction accuracy was seen to worsen at high incidence angles. Finally, the location of the laminar separation bubble between CFD and oil flow visualisation had good agreement and a set of guidelines on the mesh parameters which can be applied to low Reynolds number turbomachinery simulations was determined.


Sign in / Sign up

Export Citation Format

Share Document