The structure of non-linear processes

Tellus ◽  
1973 ◽  
Vol 25 (6) ◽  
pp. 536-544 ◽  
Author(s):  
A. Quinet
Keyword(s):  
2021 ◽  
Vol 5 ◽  
Author(s):  
Sebastian Kretschmer ◽  
Johannes Kahl

Interacting driving forces in food systems, resulting in cumulative driver effects and synergies, induce non-linear processes in multiple directions. This paper critically reviews the discourse on driving forces in food systems and argues that mindset is the primary predictor for food system outcomes. In the epoch of sustainable development goals (SDGs) and the Anthropocene, mindset matters more than ever. Transformative narratives are beginning to transcend the dominant social paradigm, which is still driving the food system's overall trajectory. The psychosocial portrayal of the systemic mindset found in organic food systems presented in this paper “flips the script” and hypothesizes that worldview and paradigm have the most causal linkages with unsustainable driver synergies and reversely the biggest leverage on the mitigation thereof. Borrowing from ecological economics discourses, the paper sharpens the driver definition by applying the DPSIR analytical tool as a modified diagnostic framework and modeling approach for food systems. This research sheds new light on the nature of drivers of change, which are often portrayed as almighty and inevitable trends shaping food systems. Instead, it is proposed that drivers emerge from the actors' mindset, affecting food system behavior in a non-linear way. Mindset drives reinforcing feedback loops, resulting in vicious and virtuous cycles. These driver motives manifest in subsystems and continue to drive their interaction across food system elements. Mindset acts as an encapsulated input of food systems, all the while responding to feedback and releasing new drivers. A transformation framework along leverage points of the food system is presented that features the concept of SDG drivers.


2019 ◽  
Vol 9 (1) ◽  
pp. 282-291 ◽  
Author(s):  
Michał Tomczak

AbstractOne of the key problems in managing the realization of a construction project is the selection of appropriate working crews and coordinating their activities in a way that ensures the highest degree of implementation of defined goals (minimizing the project duration and/or reducing downtime and related costs). Most of the existing methods of work harmonization used in construction industry allow obtaining the desired results only in relation to the organization of the processes realization in repetitive linear projects. In case of realization of non-linear construction objects or construction units, it is usually necessary to choose between the reduction of the project implementation time and maintaining the continuity of crews work on the units. It was found that there is a lack in the literature of developed method enabling harmonization of crews’ work, while minimizing the downtime at work and the duration of the entire project taking into account additional constraints, e.g. the need to not exceed the deadlines for the realization of the project stages.The article presents the concept of a multi-criteria optimization method of harmonizing the execution of non-linear processes of a multi-unit construction project in deterministic conditions. It will enable the reduction of realization time and downtimes in work, taking into account the preferences of the decision maker regarding the relevance of the optimization criteria. A mathematical model for optimizing the selection of crews and order of completion of units in multi-unit construction projects was also developed. In order to present the possibility of usage of the developed concept, an example of the optimal selection of crews and their work schedule was solved and presented. The proposed method may allow for better use of the existing production potential of construction enterprises and ensure synchronization of the crews employed during the work, especially in the case of difficulties in acquiring qualified staff in construction industry.


Sign in / Sign up

Export Citation Format

Share Document