Climate variability in Scandinavia for the past millennium simulated by an atmosphere-ocean general circulation model

Author(s):  
Isabelle Gouirand ◽  
Anders Moberg ◽  
Eduardo Zorita
1970 ◽  
Vol 9 (1-2) ◽  
pp. 143-154 ◽  
Author(s):  
MA Rouf ◽  
MK Uddin ◽  
SK Debsarma ◽  
M Mizanur Rahman

The past, present and future climatic pattern (temperature and rainfall) of northwestern and southwestern part of Bangladesh was assessed based on the High Resolution Atmospheric-Ocean General Circulation Model (AOGCM) using the present rainfall and temperature data of the Bangladesh Meteorological Department (BMD). Climatology in Bangladesh is derived from 20 km mesh MRI-AGCM (Atmospheric General Circulation Model) calibrated with reference to the observed data for the period of 1979-2006. Then, projections for rainfall and temperature are made for near future (2015-2034) and future (2075-99). Two disaster prone areas (i) northwestern part (Shapahar & Porsha) and (ii) southwestern part (Kalapara & Amtoli) were selected as the study areas. AOGCM model was run for Bangladesh and also for study areas separately. The present mean temperature for Bangladesh was found to rise from the past, rises slightly, but in near future and future the rate of mean temperature rise is projected to be much more than the present rate (increase up to 4.34 °C/100 years), the rate is projected to be 5.39 °C/100 years in case of Shapahar and Porsha a while 4.37 °C/100 years in case of Kalapara and Amtoli. The present, near future and future average rainfall of Bangladesh appeared to fluctuate, but have shown a decreasing trend (decreases up to 1.96 mm/100 years). The mean average rainfall of Shapahar and Porsha presently decreases very slowly (not significant), but in near future and future will decrease slowly (0.66mm/100 years). In case of Kalapara, the average rainfall appears to decrease presently, near future and future will decrease up to 3.62 mm/100 years. The average rainfall of Amtoli appears to decrease @ 1.92mm/100 years but in near future appears to increase slightly and again decrease @ 3.27mm/100years in future. Keywords: Atmosphere-Ocean General Circulation Model (AOGCM); climatology; simulation; temperature; rainfall DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9489 The Agriculturists 2011; 9(1&2): 143-154


2009 ◽  
Vol 39 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Max Yaremchuk ◽  
Julian McCreary ◽  
Zuojun Yu ◽  
Ryo Furue

Abstract The salinity distribution in the South China Sea (SCS) has a pronounced subsurface maximum from 150–220 m throughout the year. This feature can only be maintained by the existence of a mean flow through the SCS, consisting of a net inflow of salty North Pacific tropical water through the Luzon Strait and outflow through the Mindoro, Karimata, and Taiwan Straits. Using an inverse modeling approach, the authors show that the magnitude and space–time variations of the SCS thermohaline structure, particularly for the salinity maximum, allow a quantitative estimate of the SCS throughflow and its distribution among the three outflow straits. Results from the inversion are compared with available observations and output from a 50-yr simulation of a highly resolved ocean general circulation model. The annual-mean Luzon Strait transport is found to be 2.4 ± 0.6 Sv (Sv ≡ 106 m3 s−1). This inflow is balanced by the outflows from the Karimata (0.3 ± 0.5 Sv), Mindoro (1.5 ± 0.4), and Taiwan (0.6 ± 0.5 Sv) Straits. Results of the inversion suggest that the Karimata transport tends to be overestimated in numerical models. The Mindoro Strait provides the only passage from the SCS deeper than 100 m, and half of the SCS throughflow (1.2 ± 0.3 Sv) exits the basin below 100 m in the Mindoro Strait, a result that is consistent with a climatological run of a 0.1° global ocean general circulation model.


2008 ◽  
Vol 274 (3-4) ◽  
pp. 448-461 ◽  
Author(s):  
Mark Siddall ◽  
Samar Khatiwala ◽  
Tina van de Flierdt ◽  
Kevin Jones ◽  
Steven L. Goldstein ◽  
...  

Oceanography ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 20-29 ◽  
Author(s):  
Brian Arbic ◽  
James Richman ◽  
Jay Shriver ◽  
Patrick Timko ◽  
Joseph Metzger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document