Report on reproducibility of methods of chemical analysis used in the iron and steel industry

1967 ◽  
Author(s):  
Gokce Ozdes ◽  
Yakup Kutlu

Iron production in the iron and steel industry is a process that starts with the melting of scrap in electric arc furnaces or iron ore in basic oxygen furnaces. The proportions of the alloys in the liquid steel obtained from the liquid steel obtained by melting scrap are of great importance in order to produce the desired quality iron. In steel production, it is necessary to reduce the carbon rate to the desired level, to reduce the proportions of manganese, silicon and other chemicals to the values prescribed in the prescription, and to remove sulfur from liquid steel as much as possible. Therefore, alloys are added (FeSiMnPOTP, AltelPOTP, GrnKrbnPOTP, FeMnOrtCPOTP, KirecPOTP, FeSiPOTP, AlPOTP, FlşptPOTP etc.). Each alloy added has a chemical that acts. For example; If it is desired to change the aluminum ratio of liquid steel, AltelPOTP alloy is added. In the analysis results, it is observed that the aluminum ratios have changed. The liquid steel transferred to the ladle furnace is analyzed at certain intervals and the addition of chemical alloys continues until the required ratios are obtained. Chemical alloys added to liquid steel should not be less or more than they should be, in terms of both material and quality standards. Because the mentioned alloys are serious cost items when purchased in dollars and spread over a long term. For this reason, the rates should be adjusted very accurately. All these metallurgical processes are complex, multivariate systems. Looking at the examinations made, it is seen that while the alloys to be added to the liquid steel in the ladle furnace are rehearsed for an average of 4 times in a casting, this process is repeated at least 2 and at most 6 times. Taking samples from the liquid steel in the ladle furnace, sending the sample for chemical analysis, obtaining the result of chemical analysis and repeating these processes if the desired quality standards are not obtained, the average time is 45 minutes. These periods cause serious waste of time. For this reason, the time of the next casting has to be started later than the planned time. This causes delay in the subsequent processes (pouring liquid steel into molds in continuous casting, forming in the rolling mill, passing through quality tests, etc.). Today, with the advancement of technology, the use of artificial intelligence in the iron and steel industry will be a mandatory approach to minimize the number of proofs and minimize the loss of material and temporal labor.


Sign in / Sign up

Export Citation Format

Share Document