Mechanical vibration. Road surface profiles. Reporting of measured data

1996 ◽  
2001 ◽  
Vol 127 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Vincent Rouillard ◽  
Michael A. Sek ◽  
Ben Bruscella

2015 ◽  
Vol 60-61 ◽  
pp. 485-497 ◽  
Author(s):  
T.E. Putra ◽  
S. Abdullah ◽  
D. Schramm ◽  
M.Z. Nuawi ◽  
T. Bruckmann

2014 ◽  
Vol 926-930 ◽  
pp. 877-880
Author(s):  
Ai Hua Tang ◽  
Jian Ping Tian ◽  
Ying Hua Liao

To investigate how the conventional speeds to affect passenger cars ride comfort under a kind of road surface profiles, in multibody dynamics software (ADAMS/Car), a vehicle model was built based on the characteristic parameters of a passenger car. According to the relevant test regulations of ride comfort, the building methods of road surface profiles were discussed. Furthermore, a dynamics simulation analysis of the car was realized by ADAMS/Car and the acceleration-time histories of the seat surfaces X/Y/Z-axis under three conventional driving-speeds were acquired. A special MATLAB program was compiled to calculate the total weighted Root Mean Square (RMS) value by calling the above histories. According to the GB/T 4970-1996, a road test of a passenger car was carried out in the random road surface which equivalent to B level. The car was driven to get the values of total weighted acceleration RMS under three conventional driving-speeds. By comparing the road test result with simulation, the result indicated that the changing trend of total weighted RMS value is consistent as the driving-speed changes, and the ride comfort will decrease when the driving-speed increase. At the same time, it shows that the consistency of the simulation and road test is better.


2005 ◽  
Vol 32 (5) ◽  
pp. 825-829 ◽  
Author(s):  
Young Suk Park ◽  
Dong Ku Shin ◽  
Tae Ju Chung

Effects of road surface roughness on the dynamic impact factor of bridge are investigated through full-scale field loading tests under controlled traffic conditions. The dynamic time histories of displacements are obtained for twenty-five bridges on Korean highways. The impact factors of the bridges are evaluated by using the measured displacements. The road surface profiles of the twenty-five bridges are also measured at every 10 to 30 cm interval in the span direction. By using the measured road surface profiles, the international roughness index (IRI) and the roughness coefficients of the bridges are evaluated. The linear regression and correlation analyses are performed to obtain the coherences between the IRI and the roughness coefficient and between the IRI and the impact factor. The sample correlation coefficients between the impact factor and the IRI and between the impact factor and the roughness coefficient are calculated to be 0.61 and 0.62, respectively, showing a strong coherence between the road surface roughness and the impact factor.Key words: bridge, impact factor, road surface roughness, international roughness index, roughness coefficient.


2019 ◽  
Vol 6 (1) ◽  
pp. 59
Author(s):  
Schun T. Uechi ◽  
Hiroshi Uechi

A mechanical vibration-induced, electric energy harvesting method is discussed with applications to vibration analyses of systems of vehicles, motorboats, trains, machines and bridges, etc.. The research has evolved from the analysis of International Roughness Index (IRI), which studies roughness of road-surface as longitudinal vibrational motions in a vehicle measured with a quarter-car simulation (QCS) or Global Positioning System (GPS) with sensors such as gyro sensor and magnetometer sensor. The electric energy-convertible vibrations with information of roughness of road surface are extracted by way of an mechanoelectric energy conversion, and an energy harvesting technology suitable for the system of vehicles is discussed. The mechanical vibration-induced electric current is also suitable for IRI information measurement as well as a measure for ride quality of vehicles.


Sign in / Sign up

Export Citation Format

Share Document