Plug/bung closure systems for plastics containers with a nominal capacity of 20 l to 225 l

2000 ◽  
1996 ◽  
Vol 34 (11) ◽  
pp. 25-32 ◽  
Author(s):  
P. Chudoba ◽  
R. Pujol

Most of municipal activated sludge plants located in wine production regions receive winery wastewaters during the grape harvest period which lasts usually only a few weeks. A drastic increase in organic pollution (COD, BOD) during this period generates a temporary overloading, resulting very often in biological problems such as decreased sludge settleability, sludge floc disintegration, increased SS concentration in treated effluent and in the worst case a complete plant failure. In order to work satisfactorily even during those temporary overloading periods, the plant has to be oversized. This strategy is rather costly, because such a plant has to run below its nominal capacity during a major part of the year. An original solution has been proposed and successfully tested at a municipal wastewater treatment plant in Eguisheim, France. The proposed technique is based on the addition of a mineral material with a low particle size, whose presence positively influences the physical behaviour of the sludge and will allow the nominal capacity of the plant to be surpassed without any important modification. The modification of the sludge structure around the added powdered material improved significantly the sludge settleability (DSVI< 160 ml/g) and enabled the plant to treat organic pollution several times higher than the nominal level.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ricardo J. Sánchez ◽  
Daniel E. Perrotti ◽  
Alejandra Gomez Paz Fort

AbstractSince 2006, when the Emma Maersk broke into the world of shipping, the growth in containership size has remained a continuous trend.For the last 14 years, since 2006, the enlargement of fullcontainerships size has remained a continuous trend since Emma Maersk broke into the world of shipping. This process - that also affected north-south trades - has crucial implications in the shipping business, particularly in the planning of ports and its services and related activities. This paper analyses the global increase in vessel size and forecasts larger vessels’ arrival to South American coasts. The paper analyses evidence since 2006 to understand the factors behind the trend for bigger ships (fleets between 18,000 and 24,000 TEU) and introduce a validated methodology for the prediction of the size of container ships. Experts presented a consensus vision in which factors associated with infrastructure, economics, technology, and the environment play a crucial role in driving the trend. Next, the paper presents a methodology for forecasting the size of containerships and applies it to Latin America’s trade. The models include two alternative thresholds for the dependent variables (1310 ft LOA and 18,000 TEU of nominal capacity) that are controlled by cascading effect (i.e., the size gap between Latin America and the world’s main trade routes), and the economic activity at the destination countries (represented by port activity). Finally, the conclusions highlight the forecast’s call to take action on infrastructure planning and investments, analyzing issues such as “economies of scale,” concentration, or entry barriers. Overall, the paper warns about the importance of efficient medium-term planning in the port industry to maximize its economic impact.


2006 ◽  
Vol 55 (2-3) ◽  
pp. 369-386 ◽  
Author(s):  
George Voutsadakis

Author(s):  
Manuel Ojeda-Hernandez ◽  
Inma P. Cabrera ◽  
Pablo Cordero ◽  
Emilio Munoz-Velasco
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document