L'option double zéro et le sort de l'Europe

1988 ◽  
Vol 53 (1) ◽  
pp. 73-78
Author(s):  
Youri Davydov
Keyword(s):  
Commentaire ◽  
1989 ◽  
Vol Numéro 45 (1) ◽  
pp. 221-223
Author(s):  
Roger Stéphane
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Dongmei Zhang ◽  
Fangqi Chen

Stability and bifurcation behaviors for a model of simply supported functionally graded materials rectangular plate subjected to the transversal and in-plane excitations are studied by means of combination of analytical and numerical methods. The resonant case considered here is 1 : 1 internal resonances and primary parametric resonance. Two types of degenerated equilibrium points are studied in detail, which are characterized by a double zero and two negative eigenvalues, and a double zero and a pair of pure imaginary eigenvalues. For each case, the stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of the system parameters which may lead to Hopf bifurcation and 2D torus. With both analytical and numerical methods, bifurcation behaviors on damping parameters and detuning parameters are studied, respectively. A time integration scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic predictions.


Author(s):  
Wei Zhang ◽  
Feng-Xia Wang ◽  
Hong-Bo Wen

Abstract We present the analysis of codimension-3 degenerate bifurcations of a simply supported flexible beam subjected to harmonic axial excitation. The equation of motion with quintic nonlinear terms and the parametrical excitation for the simply supported flexible beam is derived. The main attention is focused on the dynamical properties of the global bifurcations including homoclinic bifurcations. With the aid of normal form theory, the explicit expressions of normal form associated with a double zero eigenvalues and Z2-symmetry for the averaged equations are obtained. Based on the normal form, it has been shown that a simply supported flexible beam subjected to the harmonic axial excitation can exhibit homoclinic bifurcations, multiple limit cycles, and jumping phenomena in amplitude modulated oscillations. Numerical simulations are also given to verify the good analytical predictions.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950166 ◽  
Author(s):  
Ting Yang ◽  
Qigui Yang

Intuitively, a finite-dimensional autonomous system of ordinary differential equations can only generate finitely many chaotic attractors. Amazingly, however, this paper finds a three-dimensional autonomous dynamical system that can generate infinitely many chaotic attractors. Specifically, this system can generate infinitely many coexisting chaotic attractors and infinitely many coexisting periodic attractors in the following three cases: (i) no equilibria, (ii) only infinitely many nonhyperbolic double-zero equilibria, and (iii) both infinitely many hyperbolic saddles and nonhyperbolic pure-imaginary equilibria. By analyzing the stability of double-zero and pure-imaginary equilibria, it is shown that the classic Shil’nikov criteria fail in verifying the existence of chaos in the above three cases.


Sign in / Sign up

Export Citation Format

Share Document