Faculty Opinions recommendation of Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA.

Author(s):  
Grant McFadden
1997 ◽  
Vol 71 (2) ◽  
pp. 1521-1529 ◽  
Author(s):  
N J Davis-Poynter ◽  
D M Lynch ◽  
H Vally ◽  
G R Shellam ◽  
W D Rawlinson ◽  
...  

2009 ◽  
Vol 83 (16) ◽  
pp. 8141-8152 ◽  
Author(s):  
Joseph D. Sherrill ◽  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
Diana E. Koch ◽  
Fabiola M. Bittencourt ◽  
...  

ABSTRACT The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric Gq/11 proteins and not through promiscuous coupling of M33 to the Gs pathway. Using inhibitors of signaling molecules downstream of Gq/11, we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-β and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38α and transcription factor NF-κB, occurs in the absence of Gq/11 and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-β and PKC plays a central role in MCMV pathogenesis in vivo.


Science ◽  
2020 ◽  
Vol 367 (6480) ◽  
pp. 881-887 ◽  
Author(s):  
Carl-Mikael Suomivuori ◽  
Naomi R. Latorraca ◽  
Laura M. Wingler ◽  
Stephan Eismann ◽  
Matthew C. King ◽  
...  

Biased signaling, in which different ligands that bind to the same G protein–coupled receptor preferentially trigger distinct signaling pathways, holds great promise for the design of safer and more effective drugs. Its structural mechanism remains unclear, however, hampering efforts to design drugs with desired signaling profiles. Here, we use extensive atomic-level molecular dynamics simulations to determine how arrestin bias and G protein bias arise at the angiotensin II type 1 receptor. The receptor adopts two major signaling conformations, one of which couples almost exclusively to arrestin, whereas the other also couples effectively to a G protein. A long-range allosteric network allows ligands in the extracellular binding pocket to favor either of the two intracellular conformations. Guided by this computationally determined mechanism, we designed ligands with desired signaling profiles.


1999 ◽  
Vol 73 (9) ◽  
pp. 7218-7230 ◽  
Author(s):  
Patrick S. Beisser ◽  
Gert Grauls ◽  
Cathrien A. Bruggeman ◽  
Cornelis Vink

ABSTRACT The rat cytomegalovirus (RCMV) R78 gene belongs to an uncharacterized class of viral G protein-coupled receptor (GCR) genes. The predicted amino acid sequence of the R78 open reading frame (ORF) shows 25 and 20% similarity with the gene products of murine cytomegalovirus M78 and human cytomegalovirus UL78, respectively. The R78 gene is transcribed throughout the early and late phases of infection in rat embryo fibroblasts (REF) in vitro. Transcription of R78 was found to result in three different mRNAs: (i) a 1.8-kb mRNA containing the R78 sequence, (ii) a 3.7-kb mRNA containing both R77 and R78 sequences, and (iii) a 5.7-kb mRNA containing at least ORF R77 and ORF R78 sequences. To investigate the function of the R78 gene, we generated two different recombinant virus strains: an RCMV R78 null mutant (RCMVΔR78a) and an RCMV mutant encoding a GCR from which the putative intracellular C terminus has been deleted (RCMVΔR78c). These recombinant viruses replicated with a 10- to 100-fold-lower efficiency than wild-type (wt) virus in vitro. Interestingly, unlike wt virus-infected REF, REF infected with the recombinants develop a syncytium-like appearance. A striking difference between wt and recombinant viruses was also seen in vivo: a considerably higher survival was seen among recombinant virus-infected rats than among RCMV-infected rats. We conclude that the RCMV R78 gene encodes a novel GCR-like polypeptide that plays an important role in both RCMV replication in vitro and the pathogenesis of viral infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document