Faculty Opinions recommendation of Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses.

Author(s):  
Kendal Broadie
2017 ◽  
Vol 34 (3) ◽  
pp. 163-168
Author(s):  
Ricardo V. Carlos ◽  
Hans Donald de Boer ◽  
Marcelo Luis Abramides Torres ◽  
Maria José Carvalho Carmona

Author(s):  
Giacomino Bandini ◽  
Paride Meloni ◽  
Massimiliano Polidori ◽  
Calogera Lombardo

The PERSEO experimental program was performed in the framework of a domestic research program on innovative safety systems with the purpose to increase the reliability of passive decay heat removal systems implementing in-pool heat exchangers. The conceived system was tested at SIET laboratories by modifying the existing PANTHERS IC-PCC facility utilized in the past for testing a full scale module of the GE-SBWR in-pool heat exchanger. Integral tests and stability tests were conducted to verify the operating principles, the steadiness and the effectiveness of the system. Two of the more representative tests have been analyzed with CATHARE V2.5 for code validation purposes. The paper deals with the comparison of code results against experimental data. The capabilities and the limits of the code in simulating such kind of tests are highlighted. An improvement in the modeling of the large water reserve pool is suggested trying to reduce the discrepancies observed between code results and test measurements.


1981 ◽  
Vol 60 (4) ◽  
pp. 175-181 ◽  
Author(s):  
Anna Stanec ◽  
George Stanec ◽  
Thomas Baker
Keyword(s):  

1997 ◽  
Vol 75 (1) ◽  
pp. 87-89 ◽  
Author(s):  
Yuji Ikegaya ◽  
Hiroshi Saito ◽  
Kunio Torii ◽  
Nobuyoshi Nishiyama

2011 ◽  
Vol 301 (5) ◽  
pp. C1128-C1139 ◽  
Author(s):  
Ann E. Rossi ◽  
Simona Boncompagni ◽  
Lan Wei ◽  
Feliciano Protasi ◽  
Robert T. Dirksen

Muscle contraction requires ATP and Ca2+ and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal (“longitudinal mitochondria”) to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca2+ release units (CRUs) or triads (“triadic mitochondria”). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca2+ in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca2+ accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca2+ indicator. Interestingly, sustained mitochondrial Ca2+ uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca2+ sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU−1·min−1·100 μm−2) during postnatal development in direct linear correspondence ( r2 = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca2+ spark suppression but does not significantly impact mitochondrial Ca2+ uptake.


Sign in / Sign up

Export Citation Format

Share Document