reserve pool
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Kaitlyn E. Fouke ◽  
M. Elizabeth Wegman ◽  
Sarah A. Weber ◽  
Emily B. Brady ◽  
Cristina Román-Vendrell ◽  
...  

Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 658
Author(s):  
Minchuan Zhang ◽  
George J. Augustine

In presynaptic terminals, synaptic vesicles (SVs) are found in a discrete cluster that includes a reserve pool that is mobilized during synaptic activity. Synapsins serve as a key protein for maintaining SVs within this reserve pool, but the mechanism that allows synapsins to do this is unclear. This mechanism is likely to involve synapsins either cross-linking SVs, thereby anchoring SVs to each other, or creating a liquid phase that allows SVs to float within a synapsin droplet. Here, we summarize what is known about the role of synapsins in clustering of SVs and evaluate experimental evidence supporting these two models.


2020 ◽  
Author(s):  
Kashif Mahfooz ◽  
Mathan K. Raja ◽  
John F. Wesseling

AbstractQuickly and slowly mobilized reserve vesicles within presynaptic terminals are thought to be contained within separate pools that are connected in series. However, here we use FM-dyes to show that the two types are mobilized in parallel, without intermixing. The result supports a re-conceptualization of synaptic vesicle trafficking, proposed previously, where: (1) active zones contain multiple independent docking/release sites; (2) the release sites vary in probability of catalyzing exocytosis following individual action potentials; and (3), each docked vesicle is connected to a separate reserve. The re-conceptualization is then supported further by evidence that alterations in the timing of reserve pool depletion in synapsin knockouts are largest during lightest use even though alterations in short-term synaptic plasticity are largest during heavy use. The re-conceptualization implies that low release probability sites account for both reluctant readily releasable vesicles and slowly mobilized reserves. Extensive heterogeneity suggests that synapses have the capacity to store information by modulating the ratio of low to high probability release sites.


2017 ◽  
Vol 114 (45) ◽  
pp. 12057-12062 ◽  
Author(s):  
Fabian Gerth ◽  
Maria Jäpel ◽  
Arndt Pechstein ◽  
Gaga Kochlamazashvili ◽  
Martin Lehmann ◽  
...  

Neurotransmission is mediated by the exocytic release of neurotransmitters from readily releasable synaptic vesicles (SVs) at the active zone. To sustain neurotransmission during periods of elevated activity, release-ready vesicles need to be replenished from the reserve pool of SVs. The SV-associated synapsins are crucial for maintaining this reserve pool and regulate the mobilization of reserve pool SVs. How replenishment of release-ready SVs from the reserve pool is regulated and which other factors cooperate with synapsins in this process is unknown. Here we identify the endocytic multidomain scaffold protein intersectin as an important regulator of SV replenishment at hippocampal synapses. We found that intersectin directly associates with synapsin I through its Src-homology 3 A domain, and this association is regulated by an intramolecular switch within intersectin 1. Deletion of intersectin 1/2 in mice alters the presynaptic nanoscale distribution of synapsin I and causes defects in sustained neurotransmission due to defective SV replenishment. These phenotypes were rescued by wild-type intersectin 1 but not by a locked mutant of intersectin 1. Our data reveal intersectin as an autoinhibited scaffold that serves as a molecular linker between the synapsin-dependent reserve pool and the presynaptic endocytosis machinery.


Sign in / Sign up

Export Citation Format

Share Document