Faculty Opinions recommendation of The development of direction selectivity in ferret visual cortex requires early visual experience.

Author(s):  
Gina Turrigiano
2017 ◽  
Author(s):  
Marjena Popović ◽  
Andrea K. Stacy ◽  
Mihwa Kang ◽  
Roshan Nanu ◽  
Charlotte E. Oettgen ◽  
...  

AbstractMany sensory neural circuits exhibit response normalization, which occurs when the response of a neuron to a combination of multiple stimuli is less than the sum of the responses to the individual stimuli presented alone. In the visual cortex, normalization takes the forms of cross-orientation suppression and surround suppression. At the onset of visual experience, visual circuits are partially developed and exhibit some mature features such as orientation selectivity, but it is unknown whether cross-orientation suppression or surround suppression are present at the onset of visual experience or require visual experience for their emergence. We characterized the development of these properties and their dependence on visual experience in ferrets. Visual experience was varied across three conditions: typical rearing, dark rearing, and dark rearing with daily exposure to simple sinusoidal gratings (14-16 hours total). Cross-orientation suppression and surround suppression were noted in the earliest observations, and did not vary considerably with experience. We also observed evidence of continued maturation of receptive field properties in the second month of visual experience: substantial length summation was observed only in the oldest animals (postnatal day 90); evoked firing rates were greatly increased in older animals; and direction selectivity required experience, but declined slightly in older animals. These results constrain the space of possible circuit implementations of these features.Significance StatementThe development of the brain depends on both nature – factors that are independent of the experience of an individual animal – and nurture – factors that depend on experience. While orientation selectivity, one of the major response properties of neurons in visual cortex, is already present at the onset of visual experience, it is unknown if response properties that depend on interactions among multiple stimuli develop without experience. We find that the properties of crossorientation suppression and surround suppression are present at eye opening, and do not depend on visual experience. Our results are consistent with the idea that a majority of the basic properties of sensory neurons in primary visual cortex are derived independent of the experience of an individual animal.


2006 ◽  
Vol 9 (5) ◽  
pp. 676-681 ◽  
Author(s):  
Ye Li ◽  
David Fitzpatrick ◽  
Leonard E White

2021 ◽  
Author(s):  
Andrea K Stacy ◽  
Nathan A Schneider ◽  
Noah K Gilman ◽  
Stephen D Van Hooser

Selectivity for direction of motion is a key feature of primary visual cortical neurons. Visual experience is required for direction selectivity in carnivore and primate visual cortex, but the circuit mechanisms of its formation remain incompletely understood. Here we examined how developing lateral geniculate nucleus (LGN) neurons may contribute to cortical direction selectivity. Using in vivo electrophysiology techniques, we examined LGN receptive field properties of visually naive female ferrets before and after exposure to 6 hours of motion stimuli in order to assess the effect of acute visual experience on LGN cell development. We found that acute experience with motion stimuli did not significantly affect the weak orientation or direction selectivity of LGN neurons. In addition, we found that neither latency nor sustainedness or transience of LGN neurons significantly changed with acute experience. These results suggest that the direction selectivity that emerges in cortex after acute experience is computed in cortex and cannot be explained by changes in LGN cells.


1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 39 (3) ◽  
pp. 613-630 ◽  
Author(s):  
W. Singer ◽  
F. Tretter

An attempt was made to relate the alterations of cortical receptive fields as they result from binocular visual deprivation to changes in afferent, intrinsic, and efferent connections of the striate and parastriate cortex. The experiments were performed in cats aged at least 1 jr with their eyelids sutured closed from birth.The results of the receptive-field analysis in A17 confirmed the reduction of light-responsive cells, the occasional incongruity of receptive-field properties in the two eyes, and to some extent also the loss of orientation and direction selectivity as reported previously. Other properties common to numerous deprived receptive fields were the lack of sharp inhibitory sidebands and the sometimes exceedingly large size of the receptive fields. Qualitatively as well as quantitatively, similar alterations were observed in area 18. A rather high percentage of cells in both areas had, however, preserved at least some orientation preference, and a few receptive fields had tuning properties comparable to those in normal cats. The ability of area 18 cells in normal cats to respond to much higher stimulus velocities than area 17 cells was not influenced by deprivation.The results obtained with electrical stimulation suggest two main deprivation effects: 1) A marked decrease in the safety factor of retinothalamic and thalamocortical transmission. 2) A clear decrease in efficiency of intracortical inhibition. But the electrical stimulation data also show that none of the basic principles of afferent, intrinsic, and efferent connectivity is lost or changed by deprivation. The conduction velocities in the subcortical afferents and the differentiation of the afferents to areas 17 and 18 into slow- and fast-conducting projection systems remain unaltered. Intrinsic excitatory connections remain functional; this is also true for the disynaptic inhibitory pathways activated preferentially by the fast-conducting thalamocortical projection. The laminar distribution of cells with monosynaptic versus polsynaptic excitatory connections is similar to that in normal cats. Neurons with corticofugal axons remain functionally connected and show the same connectivity pattern as those in normal cats. The nonspecific activation system from the mesencephalic reticular formation also remains functioning both at the thalamic and the cortical level.We conclude from these and several other observations that most, if not all, afferent, intrinsic, and efferent connections of areas 17 and 18 are specified from birth and depend only little on visual experience. This predetermined structural plan, however, allows for some freedom in the domain of orientation tuning, binocular correspondence, and retinotopy which is specified only when visual experience is possible.


1997 ◽  
Vol 77 (2) ◽  
pp. 554-561 ◽  
Author(s):  
Jong-Nam Kim ◽  
Kathleen Mulligan ◽  
Helen Sherk

Kim, Jong-Nam, Kathleen Mulligan, and Helen Sherk. Simulated optic flow and extrastriate cortex. I. Optic flow versus texture. J. Neurophysiol. 77: 554–561, 1997. A locomoting observer sees a very different visual scene than an observer at rest: images throughout the visual field accelerate and expand, and they follow approximately radial outward paths from a single origin. This so-called optic flow field is presumably used for visual guidance, and it has been suggested that particular areas of visual cortex are specialized for the analysis of optic flow. In the cat, the lateral suprasylvian visual area (LS) is a likely candidate. To test the hypothesis that LS is specialized for analysis of optic flow fields, we recorded cell responses to optic flow displays. Stimulus movies simulated the experience of a cat trotting slowly across an endless plain covered with small balls. In different simulations we varied the size of balls, their organization (randomly or regularly dispersed), and their color (all one gray level, or multiple shades of gray). For each optic flow movie, a “texture” movie composed of the same elements but lacking optic flow cues was tested. In anesthetized cats, >500 neurons in LS were studied with a variety of movies. Most (70%) of 454 visually responsive cells responded to optic flow movies. Visually responsive cells generally preferred optic flow to texture movies (69% of those responsive to any movie). The direction in which a movie was shown (forward or reverse) was also an important factor. Most cells (68%) strongly preferred forward motion, which corresponded to visual experience during locomotion.


Sign in / Sign up

Export Citation Format

Share Document