Faculty Opinions recommendation of Lethal H5N1 influenza viruses escape host anti-viral cytokine responses.

Author(s):  
Allan Zajac
2012 ◽  
Vol 18 (10) ◽  
pp. 1592-1592
Author(s):  
Sang Heui Seo ◽  
Erich Hoffmann ◽  
Robert G Webster

2004 ◽  
Vol 103 (1-2) ◽  
pp. 107-113 ◽  
Author(s):  
Sang Heui Seo ◽  
Erich Hoffmann ◽  
Robert G Webster

10.1038/nm757 ◽  
2002 ◽  
Vol 8 (9) ◽  
pp. 950-954 ◽  
Author(s):  
Sang Heui Seo ◽  
Erich Hoffmann ◽  
Robert G. Webster

2015 ◽  
Vol 90 (4) ◽  
pp. 1872-1879 ◽  
Author(s):  
Xiaoxiao Feng ◽  
Zeng Wang ◽  
Jianzhong Shi ◽  
Guohua Deng ◽  
Huihui Kong ◽  
...  

ABSTRACTWe isolated two H5N1 viruses, A/duck/Hunan/S4020/2008 (DK/08) and A/chicken/Guangxi/S2039/2009 (CK/09), from live-bird markets during routine surveillance and found that these two viruses are genetically similar but differ in their replication and virulence in mice. The CK/09 virus is lethal for mice with a 50% mouse lethal dose (MLD50) of 1.6 log1050% egg infectious doses (EID50), whereas the DK/08 virus is nonpathogenic for mice with an MLD50value of 6.2 log10EID50. We explored the genetic basis of the virulence difference of these two viruses by generating a series of reassortant viruses and mutants in the lethal virus CK/09 background and evaluating their virulence in mice. We found that the PB1 gene of the DK/08 virus dramatically attenuated the virulence of the CK/09 virus and that the amino acid at position 622 in PB1 made an important contribution. We further demonstrated that the mutation of glycine (G) to aspartic acid (D) at position 622 in PB1 partially impaired the binding of PB1 to viral RNA, thereby dramatically decreasing the polymerase activity and attenuating H5N1 virus virulence in mice. Our results identify a novel virulence-related marker of H5N1 influenza viruses and provide a new target for live attenuated vaccine development.IMPORTANCEH5N1 avian influenza viruses have caused the deaths of nearly 60% of the humans that they have infected since 1997 and clearly represent a threat to public health. A thorough understanding of the genetic basis of virulence determinants will provide important insights for antiviral drug and live attenuated vaccine development. Several virulence-related markers in the PB2, PA, M1, and NS1 proteins of H5N1 viruses have been identified. In this study, we isolated two H5N1 avian influenza viruses that are genetically similar but differ in their virulence in mice, and we identified a new virulence-related marker in the PB1 gene. We found that the mutation of glycine (G) to aspartic acid (D) at position 622 in PB1 partially impairs the binding of PB1 to viral RNA, thereby attenuating H5N1 virus virulence in mice. This newly identified virulence-related marker could be applied to the development of live attenuated vaccines against H5N1 influenza.


Cell Research ◽  
2009 ◽  
Vol 20 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Gabriele Neumann ◽  
Hualan Chen ◽  
George F Gao ◽  
Yuelong Shu ◽  
Yoshihiro Kawaoka

2017 ◽  
pp. JVI.01557-17 ◽  
Author(s):  
Gongxun Zhong ◽  
Mai Quynh Le ◽  
Tiago J.S. Lopes ◽  
Peter Halfmann ◽  
Masato Hatta ◽  
...  

To study the influenza viral determinants of pathogenicity, we characterized two highly pathogenic avian H5N1 influenza viruses isolated in Vietnam in 2012 (A/duck/Vietnam/QT1480/2012; QT1480) and 2013 (A/duck/Vietnam/QT1728/2013; QT1728) and found that the activity of their polymerase complexes differed significantly, even though both viruses were highly pathogenic in mice. Further studies revealed that the PA-S343A/E347D mutations reduced viral polymerase activity and mouse virulence when tested in the genetic background of QT1728 virus. In contrast, the PA-343S/347E mutations increased the polymerase activity of QT1480 and the virulence of a low pathogenic H5N1 influenza virus. The PA-343S residue (which alone increased viral polymerase activity and mouse virulence significantly relative to viral replication complexes encoding PA-343A) is frequently found in H5N1 influenza viruses of several subclades; infection with a virus possessing this amino acid may pose an increased risk to humans.IMPORTANCEH5N1 influenza viruses cause severe infections in humans with a case fatality rate that exceeds 50%. The factors that determine the high virulence of these viruses in humans are not fully understood. Here, we identified two amino acid changes in the viral polymerase PA protein that affect the activity of the viral polymerase complex and virulence in mice. Infection with viruses possessing these amino acid changes may pose an increased risk to humans.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Pramila Rijal ◽  
Bei Bei Wang ◽  
Tiong Kit Tan ◽  
Lisa Schimanski ◽  
Philipp Janesch ◽  
...  

ABSTRACT The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection. IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.


Sign in / Sign up

Export Citation Format

Share Document