viral polymerase
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 46)

H-INDEX

38
(FIVE YEARS 7)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 153
Author(s):  
Nan Chen ◽  
Guanping Chen ◽  
Xiangshuo Kong ◽  
Xiaofeng Wu

Hyperexpression of polh and p10, two very late genes, is one of the remarkable characteristics in the baculovirus life cycle. However, the mechanisms underlying the hyperexpression of these two genes are still incompletely understood. In this study, actin was identified as a highly potential binding partner of polh and p10 promoters by conducting DNA pull-down and LC–MS/MS analyses. Inhibiting actin dynamics delayed and decreased the transcription of polh and p10. Actin interacted with viral RNA polymerase and transcription regulators, and the nuclear import of viral polymerase was inhibited with the disruption of actin dynamics. Simultaneously, the high enrichment of actin in polh and p10 promoters discovered via a chromatin immunoprecipitation (ChIP) assay indicated that actin was a component of the viral polymerase TIC. Moreover, overexpression of actin surprisingly upregulated the expression of luciferase (Luc) under the control of polh and p10 promoters. Taken together, actin participated in the hyperexpression of polh and p10 as a component of TIC. These results facilitate the promotion of the expression efficiency of foreign genes in the baculovirus expression vector system (BEVS).


Virology ◽  
2021 ◽  
Vol 564 ◽  
pp. 33-38
Author(s):  
Yining Wang ◽  
Pengfei Li ◽  
Kundan Solanki ◽  
Yang Li ◽  
Zhongren Ma ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yutian Wang ◽  
Weiyang Sun ◽  
Zhenfei Wang ◽  
Menglin Zhao ◽  
Xinghai Zhang ◽  
...  

Abstract Background In 2011, a new influenza virus, named Influenza D Virus (IDV), was isolated from pigs, and then cattle, presenting influenza-like symptoms. IDV is one of the causative agents of Bovine Respiratory Disease (BRD), which causes high morbidity and mortality in feedlot cattle worldwide. To date, the molecular mechanisms of IDV pathogenicity are unknown. Recent IDV outbreaks in cattle, along with serological and genetic evidence of IDV infection in humans, have raised concerns regarding the zoonotic potential of this virus. Influenza virus polymerase is a determining factor of viral pathogenicity to mammals. Methods Here we take a prospective approach to this question by creating a random mutation library about PB2 subunit of the IDV viral polymerase to test which amino acid point mutations will increase viral polymerase activity, leading to increased pathogenicity of the virus. Results Our work shows some exact sites that could affect polymerase activities in influenza D viruses. For example, two single-site mutations, PB2-D533S and PB2-G603Y, can independently increase polymerase activity. The PB2-D533S mutation alone can increase the polymerase activity by 9.92 times, while the PB2-G603Y mutation increments the activity by 8.22 times. Conclusion Taken together, our findings provide important insight into IDV replication fitness mediated by the PB2 protein, increasing our understanding of IDV replication and pathogenicity and facilitating future studies.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1674
Author(s):  
Sunanda Baidya ◽  
Yoko Nishimoto ◽  
Seiichi Sato ◽  
Yasuhiro Shimada ◽  
Nozomi Sakurai ◽  
...  

The interaction of viral nucleic acid with protein factors is a crucial process for initiating viral polymerase-mediated viral genome replication while activating pattern recognition receptor (PRR)-mediated innate immune responses. It has previously been reported that a hydrolysate of Ge-132, 3-(trihydroxygermyl) propanoic acid (THGP), shows a modulatory effect on microbial infections, inflammation, and immune responses. However, the detailed mechanism by which THGP can modify these processes during viral infections remained unknown. Here, we show that THGP can specifically downregulate type I interferon (IFN) production in response to stimulation with a cytosolic RNA sensor RIG-I ligand 5′-triphosphate RNA (3pRNA) but not double-stranded RNA, DNA, or lipopolysaccharide. Consistently, treatment with THGP resulted in the dose-dependent suppression of type I IFN induction upon infections with influenza virus (IAV) and vesicular stomatitis virus, which are known to be mainly sensed by RIG-I. Mechanistically, THGP directly binds to the 5′-triphosphate moiety of viral RNA and competes with RIG-I-mediated recognition. Furthermore, we found that THGP can directly counteract the replication of IAV but not EMCV (encephalitismyocarditis virus), by inhibiting the interaction of viral polymerase with RNA genome. Finally, IAV RNA levels were significantly reduced in the lung tissues of THGP-treated mice when compared with untreated mice. These results suggest a possible therapeutic implication of THGP and show direct antiviral action, together with the suppressive activity of innate inflammation.


2021 ◽  
Author(s):  
Juliana Del Sarto ◽  
Vanessa Gerlt ◽  
Marcel Edgar Friedrich ◽  
Darisuren Anhlan ◽  
Viktor Wixler ◽  
...  

Influenza A virus (IAV) is the causative agent of flu disease that results in annual epidemics and occasional pandemics. IAV alters several signaling pathways of the cellular host response in order to promote its replication. Therefore, some of these pathways can serve as targets for novel anti-viral agents. Here, we show that c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) 4 is dynamically phosphorylated in IAV infection. Lack of JIP4 resulted in higher virus titers with significant differences in viral protein and mRNA accumulation as early as within the first replication cycle. In accordance, decreased IAV titers and protein accumulation was observed during overexpression of JIP4. Strikingly, the anti-viral function of JIP4 does neither originate from a modulation of JNK or p38 MAPK pathways, nor from altered expression of interferons or interferon-stimulated genes, but rather from a direct reduction of viral polymerase activity. Furthermore, interference of JIP4 with IAV replication seems to be linked to phosphorylation of the serine at position 730 that is sufficient to impede with the viral polymerase. Collectively, we provide evidence that JIP4, a host protein modulated in IAV infection, exhibits anti-viral properties that are dynamically controlled by its phosphorylation at S730. Importance Influenza A virus (IAV) infection is a world health concern and current treatment options encounter high rates of resistance. Our group investigates host pathways modified in IAV infection as promising new targets. Host protein JIP4 is dynamically phosphorylated in IAV infection. JIP4 absence resulted in higher virus titers, viral protein and mRNA accumulation within the first replication cycle. Accordingly, decreased IAV titers and protein accumulation was observed during JIP4 overexpression. Strikingly, the anti-viral function of JIP4 does neither originate from a modulation of JNK or p38 MAPK pathways, nor from altered expression of interferons or interferon-stimulated genes, but rather from a reduction in viral polymerase activity. Interference of JIP4 with IAV replication is linked to phosphorylation of serine 730. We provide evidence that JIP4, a host protein modulated in IAV infection, exhibits anti-viral properties that are dynamically controlled by its phosphorylation at S730.


2021 ◽  
Vol 14 (7) ◽  
pp. 650
Author(s):  
Yejin Jang ◽  
Jinhe Han ◽  
Xiaoli Li ◽  
Hyunjin Shin ◽  
Won-Jea Cho ◽  
...  

Influenza viruses are one of the major causative agents for human respiratory infections. Currently, vaccines and antivirals approved for preventing and treating viral infections are available. However, limited protection efficacy and frequent emergence of drug-resistant viruses stand for a need for the development of antivirals with different chemical skeletons from existing drugs. Screening of a chemical library identified an isoquinolone compound (1) as a hit with 50% effective concentrations (EC50s) between 0.2 and 0.6 µM against the influenza A and B viruses. However, it exhibited severe cytotoxic effects with a 50% cytotoxic concentration (CC50) of 39.0 µM in canine kidney epithelial cells. To address this cytotoxic issue, we synthesized an additional 22 chemical derivatives. Through structure-activity, as well as structure-cytotoxicity relationship studies, we discovered compound 21 that has higher EC50 values ranging from 9.9 to 18.5 µM, but greatly alleviated cytotoxicity with a CC50 value over 300 µM. Mode-of-action and cell type-dependent antiviral experiments indicated that it targets viral polymerase activity and functions also in human cells. Here, we present a new class of viral polymerase inhibitors with a core skeleton of isoquinolone, of which antiviral activity could be better improved through following design and synthesis of its derivatives for drug development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sten Ilmjärv ◽  
Fabien Abdul ◽  
Silvia Acosta-Gutiérrez ◽  
Carolina Estarellas ◽  
Ioannis Galdadas ◽  
...  

AbstractThe D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolas Castonguay ◽  
Wandong Zhang ◽  
Marc-André Langlois

Graphical AbstractErrors are regularly made when SARS-CoV-2 replicates its RNA genome. The viral polymerase complex is error-prone with imperfect proofreading abilities. These errors or mutations often lead to deleterious or neutral effects on the virus. However, sometimes these mutations have a positive effect and create genetic variants of the virus with different features including increased transmissibility, pathogenicity, and immune escape capabilities. When mutations work collaboratively to create a new virus feature, this is called epistasis.


2021 ◽  
pp. 106652
Author(s):  
Yuqing Wang ◽  
Congmin Yuan ◽  
Xinzhou Xu ◽  
Tin Hang Chong ◽  
Lu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document