Faculty Opinions recommendation of Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice.

Author(s):  
Steve Ward
10.1038/nm763 ◽  
2002 ◽  
Vol 8 (10) ◽  
pp. 1089-1097 ◽  
Author(s):  
Niall C. Tebbutt ◽  
Andrew S. Giraud ◽  
Melissa Inglese ◽  
Brendan Jenkins ◽  
Paul Waring ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 375-375
Author(s):  
Wei Hong ◽  
Hongxin Wang ◽  
Yuhuan Wang ◽  
John K. Choi ◽  
Suresh G. Shelat ◽  
...  

Abstract GATA-1 controls the development of erythroid cells and megakaryocytes through its ability to activate and repress gene transcription. GATA-1 binds many nuclear proteins, but only a few of these associations have been examined in vivo. One important example is FOG-1, a critical cofactor that contributes to both gene activation and repression by GATA-1. Loss of FOG-1 generally phenocopies GATA-1 deficiency, impairing both erythroid and megakaryocytic differentiation. We reported previously that FOG-1 directly binds the NuRD protein complex, which contains histone deacetylase and chromatin remodeling activities. This provides one mechanism for GATA-1/FOG-1-mediated gene repression. Accordingly, ChIP profiling of the NuRD proteins MTA-2, RbAp46 and Mi-2β revealed the presence of these molecules at the Kit and Gata2 genes both of which are directly repressed by GATA-1 in a FOG-1-dependent manner. NuRD proteins were spread broadly across the Kit and Gata2 genes but were further enriched at sites occupied by GATA-1 and FOG-1 in vivo. Unexpectedly, we also observed NuRD components at GATA-1-activated genes including β-globin and Ahsp. Moreover, the ability of FOG-1 to augment GATA-1-induced transcription in transient transfection assays required NuRD binding. Hence, NuRD may be bi-functional, contributing to either gene activation or repression, depending on the transcriptional and cellular context. To study the role of the FOG-1/NuRD interaction in vivo we generated mice bearing missense mutations in the Fog-1(Zfpm1) gene that disrupt NuRD binding in the FOG-1 protein. Homozygous mutant mice are born at reduced Mendelian ratios. Surviving animals display ineffective erythropoiesis marked by splenomegaly and impaired erythroid maturation. In addition, homozygous mutant animals display macrothrombocytopenia with impaired platelet function. Thus, recruitment of NuRD by GATA-1 and FOG-1 is essential for both erythropoiesis and megakaryocytopoiesis. Ongoing studies include further phenotypic analysis of the mutant mice, including comparative gene expression analysis in stage-matched wild-type and mutant erythroid cells to identify critical NuRD-dependent GATA target genes, and to resolve whether NuRD is essential for both activation and repression by GATA-1 and FOG-1 in vivo. An important open question under investigation is how recruitment of the NURD complex can lead to suppression of some genes and the enhanced expression of others. The FOG-1/NuRD mutant mice provide useful tools to dissect transcription pathways initiated by GATA-1. Moreover, given the role of GATA-1 mutations in congenital anemias and megakaryoblastic leukemias, enzymatic components of the NuRD complex may provide novel targets for pharmacologic manipulation to treat these disorders.


2003 ◽  
Vol 20 (4) ◽  
pp. 683-695 ◽  
Author(s):  
Henrik Oster ◽  
Gijsbertus T. J. van der Horst ◽  
Urs Albrecht

Author(s):  
Gregory J. Czarnota

Chromatin structure at the fundamental level of the nucleosome is important in vital cellular processes. Recent biochemical and genetic analyses show that nucleosome structure and structural changes are very active participants in gene expression, facilitating or inhibiting transcription and reflecting the physiological state of the cell. Structural states and transitions for this macromolecular complex, composed of DNA wound about a heterotypic octamer of variously modified histone proteins, have been measured by physico-chemical techniques and by enzyme-accessibility and are recognized to occur with various post-translational modifications, gene activation, transformation and with ionic-environment. In spite of studies which indicate various forms of nucleosome structure, all current x-ray and neutron diffraction studies have consistently resulted in only one structure, suggestive of a static conformation. In contrast, two-dimensional electron microscopy studies and three-dimensional reconstruction techniques have yielded different structures. These fundamental differences between EM and other ultrastructural studies have created a long standing quandary, which I have addressed and resolved using spectroscopic electron microscopy and statistical analyses of nucleosome images in a study of nucleosome structure with ionic environment.


2002 ◽  
Vol 69 ◽  
pp. 47-57 ◽  
Author(s):  
Catherine L. R. Merry ◽  
John T. Gallagher

Heparan sulphate (HS) is an essential co-receptor for a number of growth factors, morphogens and adhesion proteins. The biosynthetic modifications involved in the generation of a mature HS chain may determine the strength and outcome of HS–ligand interactions. These modifications are catalysed by a complex family of enzymes, some of which occur as multiple gene products. Various mutant mice have now been generated, which lack the function of isolated components of the HS biosynthetic pathway. In this discussion, we outline the key findings of these studies, and use them to put into context our own work concerning the structure of the HS generated by the Hs2st-/- mice.


Author(s):  
Alicia S. Wilson ◽  
Hsei Di Law ◽  
Christiane B. Knobbe‐Thomsen ◽  
Conor J. Kearney ◽  
Jane Oliaro ◽  
...  

1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S346-S368 ◽  
Author(s):  
Roger W. Turkington ◽  
Nobuyuki Kadohama

ABSTRACT Hormonal activation of gene transcription has been studied in a model system, the mouse mammary gland in organ culture. Transcriptive activity is stimulated in mammary stem cells by insulin, and in mammary alveolar cells by prolactin and insulin. Studies on the template requirement for expression of the genes for milk proteins demonstrate that DNA methylation has an obligatory dependence upon DNA synthesis, but is otherwise independent from hormonal regulation of mammary cell differentiation. Incorporation of 5-bromo-2′deoxyuridine into DNA selectively inhibits expression of the genes for specific milk proteins. Undifferentiated mammary cells activate the synthesis of specific acidic nuclear proteins when stimulated by insulin. Several of these induced acidic nuclear proteins are undetectable in unstimulated undifferentiated cells, but appear to be characteristic components of the nuclei of differentiated cells. These results indicate that mammary cell differentiation is associated with a change in acidic nuclear proteins, and they provide evidence to support the concept that acidic nuclear proteins may be involved in the regulation of gene transcription and of mammary cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document