nociceptive behavior
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Reiko Nobuhara ◽  
Akihiro Ito ◽  
Masafumi Nakagawa ◽  
Tatsunori Ikemoto ◽  
Kimimasa Narita ◽  
...  

: Rodent behavior assessments have been developed to evaluate pain. However, their fidgety activity and reactivity to human contact make it hard to activate animals in a consistent manner and get uniform and trustworthy responses. The present study was performed on prairie voles (aged 8 weeks). Sham (7 male prairie voles) and chronic constriction injury (CCI) (8 male prairie voles) rodents were investigated before surgery and four and seven days later. Each animal was assessed for nociceptive behavior. Pressure and mechanical threshold tests were conducted by the application of three different pushers to the center of hind paws and arterial clips to the toes while sedated with isoflurane. The CCI affected right lower extremity prominently increased nociceptive behavior scores four and seven days after the experiment, and the CCI affected right hind paw prominently decreased pressure and mechanical threshold tests four and seven days after the experiment . The pressure and mechanical thresholds were relevant to the scorings of nociceptive behavior in CCI model animals.


2021 ◽  
Author(s):  
Vladyslava Pechuk ◽  
Gal Goldman ◽  
Yehuda Salzberg ◽  
Aditi H Chaubey ◽  
R Aaron Bola ◽  
...  

How sexually dimorphic behavior is encoded in the nervous system is poorly understood. Here, we characterize the dimorphic nociceptive behavior in C. elegans and study the underlying circuits, which are composed of the same neurons but are wired differently. We show that while sensory transduction is similar in the two sexes, the downstream network topology markedly shapes behavior. We fit a network model that replicates the observed dimorphic behavior in response to external stimuli, and use it to predict simple network rewirings that would switch the behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost". Our results present a deconstruction of the design of a neural circuit that controls sexual behavior, and how to reprogram it.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1798
Author(s):  
Bárbara B. Martins ◽  
Natália G. Hösch ◽  
Queren A. Alcantara ◽  
Grant R. Budas ◽  
Che-Hong Chen ◽  
...  

Protein kinase Cε (PKCε) is highly expressed in nociceptor neurons and its activation has been reported as pro-nociceptive. Intriguingly, we previously demonstrated that activation of the mitochondrial PKCε substrate aldehyde dehydrogenase-2 (ALDH2) results in anti-nociceptive effects. ALDH2 is a major enzyme responsible for the clearance of 4-hydroxy-2-nonenal (4-HNE), an oxidative stress byproduct accumulated in inflammatory conditions and sufficient to induce pain hypersensitivity in rodents. Here we determined the contribution of the PKCε-ALDH2 axis during 4-HNE-induced mechanical hypersensitivity. Using knockout mice, we demonstrated that PKCε is essential for the nociception recovery during 4-HNE-induced hypersensitivity. We also found that ALDH2 deficient knockin mice display increased 4-HNE-induced nociceptive behavior. As proof of concept, the use of a selective peptide activator of PKCε (ΨεHSP90), which favors PKCε translocation to mitochondria and activation of PKCε-ALDH2 axis, was sufficient to block 4-HNE-induced hypersensitivity in WT, but not in ALDH2-deficient mice. Similarly, ΨεHSP90 administration prevented mechanical hypersensitivity induced by endogenous production of 4-HNE after carrageenan injection. These findings provide evidence that selective activation of mitochondrial PKCε-ALDH2 axis is important to mitigate aldehyde-mediated pain in rodents, suggesting that ΨεHSP90 and small molecules that mimic it may be a potential treatment for patients with pain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258094
Author(s):  
Maria Alice Miranda Bezerra Medeiros ◽  
Mariana Gama e Silva ◽  
Jackson de Menezes Barbosa ◽  
Érica Martins de Lavor ◽  
Tiago Feitosa Ribeiro ◽  
...  

Pain and inflammation are unpleasant experiences that usually occur as a result of tissue damage. Despite the number of existing analgesic drugs, side effects limit their use, stimulating the search for new therapeutic agents. In this sense, five hydrazone derivatives (H1, H2, H3, H4, and H5), with general structure R1R2C = NNR3R4, were synthesized with molecular modification strategies. In this paper, we describe the ability of hydrazone derivatives to attenuate nociceptive behavior and the inflammatory response in mice. Antinociceptive activity was evaluated through acetic acid-induced writhing and formalin-induced nociception tests. In both experimental models, the hydrazone with the greatest potency (H5) significantly (p < 0.05) reduced nociceptive behavior. Additionally, methods of acute and chronic inflammation induced by different chemicals (carrageenan and histamine) were performed to evaluate the anti-inflammatory effect of H5. Moreover, molecular docking analysis revealed that H5 can block the COX-2 enzyme, reducing arachidonic acid metabolism and consequently decreasing the production of prostaglandins, which are important inflammatory mediators. H5 also changes locomotor activity. In summary, H5 exhibited relevant antinociceptive and anti-inflammatory potential and acted on several targets, making it a candidate for a new multi-target oral anti-inflammatory drug.


2021 ◽  
Author(s):  
Loren J. Martin ◽  
Sandra J. Poulson ◽  
Emma Mannan ◽  
Sivaani Sivaselvachandran ◽  
Moonjeong Cho ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Natiely Silveira de Almeida ◽  
Alexandre de Barros Falcão Ferraz ◽  
Claudia Pedron ◽  
Dione Silva Correa ◽  
Luciene Bruno Vieira ◽  
...  

Abstract Background The aerial parts of Baccharis trimera (Less.) are frequently used as a tea to treat several diseases. Therefore, the aim of this study was to identify the constituents of an aqueous extract of B. trimera, focusing on their antioxidant, anti-inflammation, and antinociception activities and properties. For that, the researchers performed in vivo assays using the formalin test and Freund’s Complete Adjuvant (FCA) to measure the acute and chronic inflammatory pain in mice. Moreover, the myeloperoxidase enzyme (MPO) was analyzed in the subcutaneous tissue after the FCA injection, together with the counting of lymphocytes in the peripheral blood of the mice. Results The qualitative phytochemical analysis indicated the presence of flavonoids and saponins in the B. trimera aqueous extract. The high-performance liquid chromatography (HPLC) analyses showed the presence of phenolic compounds, such as chlorogenic acid, ellagic acid, rosmarinic acid, as well as flavonoids, such as rutin, quercetin, and luteolin. The DPPH assay was used in order to measure the antioxidant activity of the aqueous extract of B. trimera and this showed an IC50 of 118.18 ± 1.02 μg/mg. The data from the formalin test demonstrated that a single dose of the aqueous extract of B. trimera was not able to decrease the nociceptive behavior during the neurogenic phase, at any of the tested doses (20, 40, or 80 mg/kg p.o.). However, during the inflammatory phase of this test, the aqueous extract of B. trimera at 80 mg/kg (p.o.) significantly decreased the nociceptive behavior, showing more effectiveness when compared to the other tested doses (p < 0.05). Importantly, in the chronic inflammatory model on the 5th day of treatment, the aqueous extract of B. trimera (80 mg/kg p.o.) significantly reduced mechanical allodynia (p < 0.01), heat thermal hyperalgesia (p < 0.001), and paw edema (p < 0.05). There were no changes in the MPO activity, but the data exhibited an equivalent decrease in the number of lymphocytes in the blood of the mice that were treated with B. trimera (80 mg.kg− 1 p.o.) and diclofenac sodium. Conclusion Taken together, the present data reinforces the potential of the B. trimera aqueous extract as an anti-inflammatory and analgesic compound.


Development ◽  
2021 ◽  
Author(s):  
Ravi Das ◽  
Shatabdi Bhattacharjee ◽  
Jamin M. Letcher ◽  
Jenna M. Harris ◽  
Sumit Nanda ◽  
...  

Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding mechanistic links between cytoskeletal organization and neuronal function. We identified Formin3 (Form3) as a critical regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human Inverted Formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.


Author(s):  
Laura Rullo ◽  
Luca Posa ◽  
Francesca Felicia Caputi ◽  
Serena Stamatakos ◽  
Francesco Formaggio ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Chen Jiang ◽  
Weilin Fang ◽  
Tingting Lv ◽  
Yinjun Gu ◽  
Jianwei Lv

Interstitial cystitis is associated with neurogenic inflammation and neuropathic bladder pain. Dual leucine zipper kinase (DLK) expressed in sensory neurons is implicated in neuropathic pain. We hypothesized that neuronal DLK is involved in the regulation of inflammation and nociceptive behavior in cystitis. Mice deficient in DLK in sensory neurons (cKO) were generated by crossing DLK floxed mice with mice expressing Cre recombinase under Advillin promoter. Cystitis was induced by cyclophosphamide (CYP) administration in mice. Nociceptive behavior, bladder inflammation, and pathology were assessed following cystitis induction in control and cKO mice. The role of DLK in CYP-induced cystitis was further determined by pharmacological inhibition of DLK with GNE-3511. Deletion of neuronal DLK attenuated CYP-induced pain-like nociceptive behavior and suppressed histamine release from mast cells, neuronal activation in the spinal cord, and bladder pathology. Mice deficient in neuronal DLK also showed reduced inflammation induced by CYP and reduced c-Jun activation in the dorsal root ganglia (DRG). Pharmacological inhibition of DLK with GNE-3511 recapitulated the effects of neuronal DLK depletion in CYP treatment mice. Our study suggests that DLK is a potential target for the treatment of neuropathic pain and bladder pathology associated with cystitis.


2021 ◽  
Vol 44 (5) ◽  
pp. 742-746
Author(s):  
Ryota Yamagata ◽  
Wataru Nemoto ◽  
Maho Fujita ◽  
Osamu Nakagawasai ◽  
Koichi Tan-No

Sign in / Sign up

Export Citation Format

Share Document