reciprocal regulation
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 97)

H-INDEX

72
(FIVE YEARS 7)

2022 ◽  
Vol 119 (3) ◽  
pp. e2116623119
Author(s):  
Chen Hao ◽  
Yanzhi Yang ◽  
Jianmei Du ◽  
Xing Wang Deng ◽  
Lei Li

Leaf senescence is a critical process in plants and has a direct impact on many important agronomic traits. Despite decades of research on senescence-altered mutants via forward genetics and functional assessment of senescence-associated genes (SAGs) via reverse genetics, the senescence signal and the molecular mechanism that perceives and transduces the signal remain elusive. Here, using dark-induced senescence (DIS) of Arabidopsis leaf as the experimental system, we show that exogenous copper induces the senescence syndrome and transcriptomic changes in light-grown plants parallel to those in DIS. By profiling the transcriptomes and tracking the subcellular copper distribution, we found that reciprocal regulation of plastocyanin, the thylakoid lumen mobile electron carrier in the Z scheme of photosynthetic electron transport, and SAG14 and plantacyanin (PCY), a pair of interacting small blue copper proteins located on the endomembrane, is a common thread in different leaf senescence scenarios, including DIS. Genetic and molecular experiments confirmed that the PCY-SAG14 module is necessary and sufficient for promoting DIS. We also found that the PCY-SAG14 module is repressed by a conserved microRNA, miR408, which in turn is repressed by phytochrome interacting factor 3/4/5 (PIF3/4/5), the key trio of transcription factors promoting DIS. Together, these findings indicate that intracellular copper redistribution mediated by PCY-SAG14 has a regulatory role in DIS. Further deciphering the copper homeostasis mechanism and its interaction with other senescence-regulating pathways should provide insights into our understanding of the fundamental question of how plants age.


Author(s):  
Yves R. Juste ◽  
Susmita Kaushik ◽  
Mathieu Bourdenx ◽  
Ranee Aflakpui ◽  
Sanmay Bandyopadhyay ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. 1041
Author(s):  
Inma Quilis ◽  
Mercè Gomar-Alba ◽  
Juan Carlos Igual

Cell-signaling pathways are essential for cells to respond and adapt to changes in their environmental conditions. The cell-wall integrity (CWI) pathway of Saccharomyces cerevisiae is activated by environmental stresses, compounds, and morphogenetic processes that compromise the cell wall, orchestrating the appropriate cellular response to cope with these adverse conditions. During cell-cycle progression, the CWI pathway is activated in periods of polarized growth, such as budding or cytokinesis, regulating cell-wall biosynthesis and the actin cytoskeleton. Importantly, accumulated evidence has indicated a reciprocal regulation of the cell-cycle regulatory system by the CWI pathway. In this paper, we describe how the CWI pathway regulates the main cell-cycle transitions in response to cell-surface perturbance to delay cell-cycle progression. In particular, it affects the Start transcriptional program and the initiation of DNA replication at the G1/S transition, and entry and progression through mitosis. We also describe the involvement of the CWI pathway in the response to genotoxic stress and its connection with the DNA integrity checkpoint, the mechanism that ensures the correct transmission of genetic material and cell survival. Thus, the CWI pathway emerges as a master brake that stops cell-cycle progression when cells are coping with distinct unfavorable conditions.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Rongkun Li ◽  
Hengchao Li ◽  
Lili Zhu ◽  
Xiaoxin Zhang ◽  
Dejun Liu ◽  
...  

AbstractHypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3130
Author(s):  
Yvonne Xinyi Lim ◽  
Hexian Lin ◽  
Sock Hong Seah ◽  
Yoon Pin Lim

Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Shaoqun Shu ◽  
Hui Wang ◽  
Jiefu Zhu ◽  
Zhiwen Liu ◽  
Danyi Yang ◽  
...  

AbstractBoth endoplasmic reticulum (ER) stress and autophagy have been implicated in chronic kidney injury and renal fibrosis. However, the relationship and regulatory mechanisms between ER stress and autophagy under this condition remain largely unknown. In this study, we first established a mouse model of ER stress-induced chronic kidney injury by 2 weekly injections of a low dose of tunicamycin (TM), a classical ER stress inducer. This model showed the induction of ER stress, autophagy, fibrosis and apoptosis in kidney tissues. In vitro, TM also induced ER stress, autophagy, fibrosis and apoptosis in HK-2 human kidney proximal tubular cells and BUMPT-306 mouse kidney proximal tubular cells. In these cells, autophagy inhibitor suppressed TM-induced fibrotic changes and apoptosis, suggesting an involvement of autophagy in ER stress-associated chronic kidney injury. PERK inhibitor ameliorated autophagy, fibrotic protein expression and apoptosis in TM-treated cells, indicating a role of the PERK/eIF2α pathway in autophagy activation during ER stress. Similar results were shown in TGF-β1-treated HK-2 cells. Interestingly, in both TM- or TGF-β1-treated kidney proximal tubular cells, inhibition of autophagy exaggerated ER stress, suggesting that autophagy induced by ER stress provides a negative feedback mechanism to reduce the stress. Together, these results unveil a reciprocal regulation between ER stress and autophagy in chronic kidney injury and fibrosis.


Author(s):  
Anwarul Ferdous ◽  
Sarvjeet Singh ◽  
Yuxuan Luo ◽  
Md J Abedin ◽  
Nan Jiang ◽  
...  

Rationale: Fetal growth and survival depend critically on proper development and integrity of the vascular system. Fli1 (Friend leukemia integration 1), a member of the Ets family of transcription factors, plays critical roles in vascular morphogenesis and homeostasis at mid-gestation, the developmental stage at which expression of its upstream regulator, Etv2, ceases. However, molecular mechanisms of Fli1 action in vascular morphogenesis remain incompletely understood. Objective: To dissect molecular mechanisms of vascular morphogenesis governed by Fli1. Methods and Results: Utilizing Fli1 promoter-driven lineage-specific LacZ expression, Fli1 loss-of-function strategies, and a series of molecular techniques, we demonstrate that Fli1 expression in multipotent myogenic progenitor cells (MPCs) occurs independent of Etv2, and loss of Fli1 expression results in a significant increase in LacZ+ cells in mesoderm within somites and limb buds, leading to reciprocal regulation of the expression of several key endothelial and myogenic genes and vascular abnormalities. Conversely, embryos with conditional Fli1 gain-of-function in MPCs manifested aberrant vasculogenesis with lack of myogenesis. Mechanistically, elevated Fli1 activity in myoblasts and in adult MPCs (also called satellite cells) of X-linked muscular dystrophic mdx mice markedly induced endothelial, but attenuated myogenic, gene expression and differentiation. Importantly, ectopic expression of Myf5 or MyoD, two key myogenic regulators, in Fli1-expressing myoblasts restored their differentiation potential, indicating that levels of Fli1 and myogenic regulators in MPCs inversely regulate their endothelial versus myogenic potential. Conclusions: Fli1 governs vascular morphogenesis by regulating endothelial potential by inversely regulating endothelial versus myogenic programs in MPCs. Our data uncover an important and previously unrecognized mechanism of vascular morphogenesis governed by Fli1 and highlight the physiological significance of the fine tuning of Fli1 activity in multipotent progenitors for proper vascular and muscle morphogenesis during development and disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amber G. Bozward ◽  
Vincenzo Ronca ◽  
Daniel Osei-Bordom ◽  
Ye Htun Oo

The tight relationship between the gut and liver on embryological, anatomical and physiological levels inspired the concept of a gut-liver axis as a central element in the pathogenesis of gut-liver axis diseases. This axis refers to the reciprocal regulation between these two organs causing an integrated system of immune homeostasis or tolerance breakdown guided by the microbiota, the diet, genetic background, and environmental factors. Continuous exposure of gut microbiome, various hormones, drugs and toxins, or metabolites from the diet through the portal vein adapt the liver to maintain its tolerogenic state. This is orchestrated by the combined effort of immune cells network: behaving as a sinusoidal and biliary firewall, along with a regulatory network of immune cells including, regulatory T cells and tolerogenic dendritic cells (DC). In addition, downregulation of costimulatory molecules on hepatic sinusoids, hepatocytes and biliary epithelial cells as well as regulating the bile acids chain also play a part in hepatic immune homeostasis. Recent evidence also demonstrated the link between changes in the gut microbiome and liver resident immune cells in the progression of cirrhosis and the tight correlation among primary sclerosing cholangitis (PSC) and also checkpoint induced liver and gut injury. In this review, we will summarize the most recent evidence of the bidirectional relationship among the gut and the liver and how it contributes to liver disease, focusing mainly on PSC and checkpoint induced hepatitis and colitis. We will also focus on completed therapeutic options and on potential targets for future treatment linking with immunology and describe the future direction of this research, taking advantage of modern technologies.


Sign in / Sign up

Export Citation Format

Share Document