Faculty Opinions recommendation of The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.

Author(s):  
Ziheng Yang
2019 ◽  
Vol 69 (4) ◽  
pp. 722-738 ◽  
Author(s):  
Christopher T Jones ◽  
Noor Youssef ◽  
Edward Susko ◽  
Joseph P Bielawski

Abstract A central objective in biology is to link adaptive evolution in a gene to structural and/or functional phenotypic novelties. Yet most analytic methods make inferences mainly from either phenotypic data or genetic data alone. A small number of models have been developed to infer correlations between the rate of molecular evolution and changes in a discrete or continuous life history trait. But such correlations are not necessarily evidence of adaptation. Here, we present a novel approach called the phenotype–genotype branch-site model (PG-BSM) designed to detect evidence of adaptive codon evolution associated with discrete-state phenotype evolution. An episode of adaptation is inferred under standard codon substitution models when there is evidence of positive selection in the form of an elevation in the nonsynonymous-to-synonymous rate ratio $\omega$ to a value $\omega > 1$. As it is becoming increasingly clear that $\omega > 1$ can occur without adaptation, the PG-BSM was formulated to infer an instance of adaptive evolution without appealing to evidence of positive selection. The null model makes use of a covarion-like component to account for general heterotachy (i.e., random changes in the evolutionary rate at a site over time). The alternative model employs samples of the phenotypic evolutionary history to test for phenomenological patterns of heterotachy consistent with specific mechanisms of molecular adaptation. These include 1) a persistent increase/decrease in $\omega$ at a site following a change in phenotype (the pattern) consistent with an increase/decrease in the functional importance of the site (the mechanism); and 2) a transient increase in $\omega$ at a site along a branch over which the phenotype changed (the pattern) consistent with a change in the site’s optimal amino acid (the mechanism). Rejection of the null is followed by post hoc analyses to identify sites with strongest evidence for adaptation in association with changes in the phenotype as well as the most likely evolutionary history of the phenotype. Simulation studies based on a novel method for generating mechanistically realistic signatures of molecular adaptation show that the PG-BSM has good statistical properties. Analyses of real alignments show that site patterns identified post hoc are consistent with the specific mechanisms of adaptation included in the alternate model. Further simulation studies show that the covarion-like component of the PG-BSM plays a crucial role in mitigating recently discovered statistical pathologies associated with confounding by accounting for heterotachy-by-any-cause. [Adaptive evolution; branch-site model; confounding; mutation-selection; phenotype–genotype.]


2016 ◽  
Author(s):  
Sahar Parto ◽  
Nicolas Lartillot

AbstractRubisco (Ribulose-1, 5-biphosphate carboxylase/oxygenase) is the most important enzyme on earth, catalyzing the first step of CO2 fixation in photosynthesis. Its molecular adaptation to C4 photosynthetic pathway has attracted a lot of attention. C4 plants, which comprise less than 5% of land plants, have evolved more efficient photosynthesis compared to C3 plants. Interestingly, a large number of independent transitions from C3 to C4 phenotype have occurred. Each time, the Rubisco enzyme has been subject to similar changes in selective pressure, thus providing an excellent model for convergent evolution at the molecular level. Molecular adaptation is often identified with positive selection and is typically characterized by an elevated ratio of non-synonymous over synonymous substitution rates (dN/dS). However, convergent adaptation is expected to leave a different molecular signature, taking the form of repeated transitions toward identical or similar amino acids.Here, we use a previously introduced codon-based differential selection model to detect and quantify consistent patterns of convergent adaptation in Rubisco in Amaranthaceae. We further contrast the results thus obtained with those obtained under classical codon models based on the estimation of dN/dS. We find that the two classes of models tend to select distinct, although overlapping, sets of positions. This discrepancy in the results illustrates the conceptual difference between these models, while emphasizing the need to better discriminate between qualitatively different selective regimes, by using a broader class of codon models than those currently considered in molecular evolutionary studies.


2000 ◽  
Vol 52 (6) ◽  
pp. 555-562 ◽  
Author(s):  
I. Nepomnaschy ◽  
G. Lombardi ◽  
P. Bekinschtein ◽  
P. Berguer ◽  
V. Francisco ◽  
...  

1997 ◽  
Vol 78 (02) ◽  
pp. 930-933 ◽  
Author(s):  
Ping Chang ◽  
D L Aronson

SummaryFive plasma preparations (11 lots) used in the treatment of von Willebrand’s disease (vWD) were evaluated. The collagen binding function of von Willebrand factor (vWF) containing preparations was compared with the ristocetin cofactor activity and the vWF antigen. Some preparations have higher ratio of functional activity (ristocetin cofactor and collagen binding) relative to the antigen than is found in normal plasma. The ristocetin cofactor activity and the collagen binding activity are tightly correlated (r = .95). Ultracentrifugal (UCF) analysis was used to compare the size distribution of vWf antigen, ristocetin cofactor and collagen binding activity. The sedimentation of all of the vWF parameters in the plasma products was slower than in plasma. In plasma products the ristocetin cofactor activity sediments the most rapidly, the collagen binding activity is slower and the antigen the slowest. The collagen/antigen ratio decreases with decreasing vWF size. Assignment of potency to vWF containing preparations utilizing the collagen binding activity may be more precise and as accurate as with the traditional ristocetin cofactor assay.


Diabetes ◽  
1994 ◽  
Vol 43 (1) ◽  
pp. 47-52 ◽  
Author(s):  
D. Bellgrau ◽  
J. M. Redd ◽  
K. S. Sellins

Sign in / Sign up

Export Citation Format

Share Document