Faculty Opinions recommendation of Transient electrical coupling delays the onset of chemical neurotransmission at developing synapses.

Author(s):  
Rachel Wong
Keyword(s):  
Author(s):  
Lorenzo Cangiano ◽  
Sabrina Asteriti

AbstractIn the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


ASAIO Journal ◽  
1999 ◽  
Vol 45 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Joseph P. Hart ◽  
Santos E. Cabreriza ◽  
David A. Dean ◽  
Chao-Xiang Jia ◽  
Henry M. Spotnitz

1965 ◽  
Vol 48 (5) ◽  
pp. 797-823 ◽  
Author(s):  
L. Barr ◽  
M. M. Dewey ◽  
W. Berger

The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.


1999 ◽  
Vol 161 (2) ◽  
pp. 660-664 ◽  
Author(s):  
C.H. FRY ◽  
M. COOKLIN ◽  
J. BIRNS ◽  
A.R. MUNDY

Sign in / Sign up

Export Citation Format

Share Document