Faculty Opinions recommendation of Deficits in saccade target selection after inactivation of superior colliculus.

Author(s):  
Douglas Munoz
2001 ◽  
Vol 86 (5) ◽  
pp. 2527-2542 ◽  
Author(s):  
Gregory D. Horwitz ◽  
William T. Newsome

We investigated the role of the superior colliculus (SC) in saccade target selection in rhesus monkeys who were trained to perform a direction-discrimination task. In this task, the monkey discriminated between opposed directions of visual motion and indicated its judgment by making a saccadic eye movement to one of two visual targets that were spatially aligned with the two possible directions of motion in the display. Thus the neural circuits that implement target selection in this task are likely to receive directionally selective visual inputs and be closely linked to the saccadic system. We therefore studied prelude neurons in the intermediate and deep layers of the SC that can discharge up to several seconds before an impending saccade, indicating a relatively high-level role in saccade planning. We used the direction-discrimination task to identify neurons whose prelude activity “predicted” the impending perceptual report several seconds before the animal actually executed the operant eye movement; these “choice predicting” cells comprised ∼30% of the neurons we encountered in the intermediate and deep layers of the SC. Surprisingly, about half of these prelude cells yielded direction-selective responses to our motion stimulus during a passive fixation task. In general, these neurons responded to motion stimuli in many locations around the visual field including the center of gaze where the visual discriminanda were positioned during the direction-discrimination task. Preferred directions generally pointed toward the location of the movement field of the SC neuron in accordance with the sensorimotor demands of the discrimination task. Control experiments indicate that the directional responses do not simply reflect covertly planned saccades. Our results indicate that a small population of SC prelude neurons exhibits properties appropriate for linking stimulus cues to saccade target selection in the context of a visual discrimination task.


2008 ◽  
Vol 99 (5) ◽  
pp. 2694-2702 ◽  
Author(s):  
Robert M. McPeek

Recent evidence indicates that inactivation of the primate superior colliculus (SC) results in an increase in saccade target-selection errors. The pattern of errors suggests that a winner-take-all competition selects the saccade goal and that SC inactivation perturbs this process by biasing the competition against stimuli in the inactivated field. To investigate this idea, the difficulty of target selection was manipulated in a color-oddity search task by varying the number of homogeneous distractors in the search array. Previous studies have shown that target selection is easier when a greater number of homogeneous distractors is present, due to perceptual grouping of the distractors. These results were replicated when testing with the SC intact. Surprisingly, during SC inactivation, this normal trend was reversed: target-selection performance declined significantly with more distractors, resulting in a greater proportion of errant saccades to distractors. Examination of the saccade endpoints indicates that after SC inactivation, many errant saccades were directed to distractors adjacent to the target. This pattern of results suggests that the salience signal used by the SC for target selection is relatively broad in spatial scope. As a result, when the area of the SC representing the target location is inactivated, distractors near the target are at a competitive advantage relative to more distant distractors and, consequently, are selected more often as the saccade goal. This contributes to the trend of worse performance with more distractors due to the greater proximity of distractors to the target.


2004 ◽  
Vol 7 (7) ◽  
pp. 757-763 ◽  
Author(s):  
Robert M McPeek ◽  
Edward L Keller

2001 ◽  
Vol 86 (5) ◽  
pp. 2543-2558 ◽  
Author(s):  
Gregory D. Horwitz ◽  
William T. Newsome

We investigated the role of the superior colliculus (SC) in saccade target selection while macaque monkeys performed a direction-discrimination task. The monkeys selected one of two possible saccade targets based on the direction of motion in a stochastic random-dot display; the difficulty of the task was varied by adjusting the strength of the motion signal in the display. One of the two saccade targets was positioned within the movement field of the SC neuron under study while the other target was positioned well outside the movement field. Approximately 30% of the neurons in the intermediate and deep layers of the SC discharged target-specific preludes of activity that “predicted” target choices well before execution of the saccadic eye movement. Across the population of neurons, the strength of the motion signal in the display influenced the intensity of this “predictive” prelude activity: SC activity signaled the impending saccade more reliably when the motion signal was strong than when it was weak. The dependence of neural activity on motion strength could not be explained by small variations in the metrics of the saccadic eye movements. Predictive activity was particularly strong in a subpopulation of neurons with directional visual responses that we have described previously. For a subset of SC neurons, therefore, prelude activity reflects the difficulty of the direction discrimination in addition to the target of the impending saccade. These results are consistent with the notion that a restricted network of SC neurons plays a role in the process of saccade target selection.


Sign in / Sign up

Export Citation Format

Share Document