Faculty Opinions recommendation of Spatial scaling of microbial eukaryote diversity.

Author(s):  
Ian M Head
Nature ◽  
2004 ◽  
Vol 432 (7018) ◽  
pp. 747-750 ◽  
Author(s):  
Jessica L. Green ◽  
Andrew J. Holmes ◽  
Mark Westoby ◽  
Ian Oliver ◽  
David Briscoe ◽  
...  

2013 ◽  
Vol 49 (5) ◽  
pp. 3007-3023 ◽  
Author(s):  
Joaquín Jiménez-Martínez ◽  
Laurent Longuevergne ◽  
Tanguy Le Borgne ◽  
Philippe Davy ◽  
Anna Russian ◽  
...  

2001 ◽  
Vol 13 (5) ◽  
pp. 1023-1043
Author(s):  
Chris J. S. Webber

This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.


2013 ◽  
Vol 41 (1) ◽  
pp. 36 ◽  
Author(s):  
Liangjun HU ◽  
Qinfeng GUO

How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second, productivity  per se varies with community or ecosystem maturity. If diversity indeed drives productivity, the criterion of choosing appropriate measures for productivity is not available. Third, spatial scaling suggests that sampling based on small-plots may not be suitable for formulating species richness-productivity relationships (SRPRs). Thus, the long-standing assumption simply linking diversity with productivity and pursuing a generalizing pattern may not be robust. We argue that productivity, though defined as ‘the rate of biomass production’, has been measured in two ways environmental surrogates and biomass production leading to misinterpretations and difficulty in the pursuit of generalizable SRPRs. To tackle these issues, we developed an integrative theoretical paradigm encompassing richer biological and physical contexts and clearly reconciling the major processes of the systems, using proper productivity measures and sampling units. We conclude that loose interpretation and confounding measures of productivity may be the real root of current SRPR inconsistencies and debate.


Sign in / Sign up

Export Citation Format

Share Document