Faculty Opinions recommendation of The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans.

Author(s):  
Herb Arst
Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Karina Sampson ◽  
I. Brent Heath

Creating and maintaining cell polarity are complex processes that are not fully understood. Fungal hyphal tip growth is a highly polarized and dynamic process involving both F-actin and microtubules (MTs), but the behaviour and roles of the latter are unclear. To address this issue, MT dynamics and subunit distribution were analysed in a strain of Aspergillus nidulans expressing GFP–α-tubulin. Apical MTs are the most dynamic, the bulk of which move tipwards from multiple subapical spindle pole bodies, the only clear region of microtubule nucleation detected. MTs populate the apex predominantly by elongation at rates about three times faster than tip extension. This polymerization was facilitated by the tipward migration of MT subunits, which generated a tip-high gradient. Subapical regions of apical cells showed variable tubulin subunit distributions, without tipward flow, while subapical cells showed even tubulin subunit distribution and low MT dynamics. Short MTs, of a similar size to those reported in axons, also occasionally slid into the apex. During mitosis in apical cells, MT populations at the tip varied. Cells with less distance between the tip and the first nucleus were more likely to loose normal MT populations and dynamics. Reduced MTs in the tip, during mitosis or after exposure to the MT inhibitor carbendazim (MBC), generally correlated with reduced, but continuing growth and near-normal tip morphology. In contrast, the actin-disrupting agent latrunculin B reduced growth rates much more severely and dramatically distorted tip morphology. These results suggest substantial independence between MTs and hyphal tip growth and a more essential role for F-actin. Among MT-dependent processes possibly contributing to tip growth is the transportation of vesicles. However, preliminary ultrastructural data indicated a lack of direct MT–organelle interactions. It is suggested that the population of dynamic apical MTs enhance migration of the ‘cytomatrix’, thus ensuring that organelles and proteins maintain proximity to the constantly elongating tip.


2005 ◽  
Vol 16 (2) ◽  
pp. 918-926 ◽  
Author(s):  
Tetsuya Horio ◽  
Berl R. Oakley

The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-α-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew ≈5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10× reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.


2020 ◽  
Vol 16 (1) ◽  
pp. 58-63
Author(s):  
Amrutha Vijayakumar ◽  
Ajith Madhavan ◽  
Chinchu Bose ◽  
Pandurangan Nanjan ◽  
Sindhu S. Kokkal ◽  
...  

Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
K. E. P. Sugden ◽  
M. R. Evans ◽  
W. C. K. Poon ◽  
N. D. Read

2004 ◽  
Vol 10 (S02) ◽  
pp. 1554-1555
Author(s):  
Maho Uchida ◽  
Solomon Bartnicki-García ◽  
Robert W. Roberson

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1972 ◽  
Vol 50 (12) ◽  
pp. 2455-2462 ◽  
Author(s):  
Daniela da Riva Ricci ◽  
Bryce Kendrick

Starting from simple morphological considerations and a hypothesis involving 'unset' and 'set' wall, a mathematical model simulating the growth of the hyphal tip is derived, and the results displayed by plotter.


2011 ◽  
Vol 166 (3) ◽  
pp. 137-145 ◽  
Author(s):  
Sigyn Jorde ◽  
Andrea Walther ◽  
Jürgen Wendland

Sign in / Sign up

Export Citation Format

Share Document