Faculty of 1000 evaluation for A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis.

Author(s):  
Malcolm Whiteway
PLoS Genetics ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. e1002058 ◽  
Author(s):  
Nike Bharucha ◽  
Yeissa Chabrier-Roselló ◽  
Tao Xu ◽  
Cole Johnson ◽  
Sarah Sobczynski ◽  
...  

2020 ◽  
Author(s):  
Sierra Rosiana ◽  
Liyang Zhang ◽  
Grace H. Kim ◽  
Alexey V. Revtovich ◽  
Arjun Sukumaran ◽  
...  

AbstractCandida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans’ ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, or in every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.SummaryCandida albicans is a human fungal pathogen and cause of life-threatening systemic infections. Cell surface-associated adhesins play a central role in this pathogen’s ability to establish infection. Here, we provide a comprehensive analysis of adhesin factors, and their role in fungal virulence. Exploiting a high-throughput workflow, we screened an adhesin mutant library using C. elegans as a simple model host, and identified mutants and genetic interactions involved in virulence. We found that adhesin mutants are impaired in in vitro pathogenicity, irrespective of their virulence. Together, this work provides new insight into the role of adhesin factors in mediating fungal virulence.


2020 ◽  
Vol 295 (50) ◽  
pp. 16906-16919
Author(s):  
Jae-Hong Kim ◽  
Yeojin Seo ◽  
Myungjin Jo ◽  
Hyejin Jeon ◽  
Young-Seop Kim ◽  
...  

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


2004 ◽  
Vol 12 (4) ◽  
pp. 157-161 ◽  
Author(s):  
Vincent M. Bruno ◽  
Aaron P. Mitchell

2015 ◽  
Vol 14 (6) ◽  
pp. 578-587 ◽  
Author(s):  
Zhiyun Guan ◽  
Haoping Liu

ABSTRACTNucleosome destabilization by histone variants and modifications has been implicated in the epigenetic regulation of gene expression, with the histone variant H2A.Z and acetylation of H3K56 (H3K56ac) being two examples. Here we find that deletion ofSWR1, the major subunit of the SWR1 complex depositing H2A.Z into chromatin in exchange for H2A, promotes epigenetic white-opaque switching inCandida albicans. We demonstrate through nucleosome mapping that SWR1 is required for proper nucleosome positioning on the promoter ofWOR1, the master regulator of switching, and that its effects differ in white and opaque cells. Furthermore, we find that H2A.Z is enriched adjacent to nucleosome-free regions at theWOR1promoter in white cells, suggesting a role in the stabilization of a repressive chromatin state. Deletion ofYNG2, a subunit of the NuA4 H4 histone acetyltransferase (HAT) that targets SWR1 activity through histone acetylation, produces a switching phenotype similar to that ofswr1, and both may act downstream of the GlcNAc signaling pathway. We further uncovered a genetic interaction betweenswr1and elevated H3K56ac with the discovery that theswr1deletion mutant is highly sensitive to nicotinamide. Our results suggest that the interaction of H2A.Z and H3K56ac regulates epigenetic switching at the nucleosome level, as well as having global effects.


Sign in / Sign up

Export Citation Format

Share Document