scholarly journals Genetic interaction analysis comes to the diploid human pathogen Candida albicans

2020 ◽  
Vol 16 (4) ◽  
pp. e1008399
Author(s):  
Virginia E. Glazier ◽  
Damian J. Krysan
2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Viola Halder ◽  
Brianna McDonnell ◽  
Rebecca Shapiro

Candida albicans is an opportunistic fungal pathogen found in the oral mucosa, the gut, the vaginal mucosa, and humans' skin. While C. albicans can cause superficial infections, severe invasive infections can occur in immunocompromised individuals. Understanding the survival mechanisms and pathogenesis of C. albicans is critical for novel antifungal drug discovery. Determining the relationships between different genes can create a genetic interaction map, which can identify complementary gene sets, central to C. albicans survival, as potential drug targets in combination therapy. A genetic approach using the CRISPR-Cas9-based genome editing platform will focus on genetic interaction analysis of C. albicans stress response genes. The ultimate goal is to create a stress response gene deletion library to study its pathogen survival role. This library of single and double stress response gene mutants will be screened under diverse growth conditions to assess their relative fitness. Genetic interaction analysis will help map out epistatic interactions between fungal genes involved in growth, survival, and pathogenesis and uncover putative targets for combination antifungal therapy based on negative or synthetic lethal genetic interactions.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Rebecca S. Shapiro ◽  
Alejandro Chavez ◽  
Caroline B. M. Porter ◽  
Meagan Hamblin ◽  
Christian S. Kaas ◽  
...  

2018 ◽  
Vol 4 ◽  
pp. 10-19 ◽  
Author(s):  
Hélène Martin-Yken ◽  
Tina Bedekovic ◽  
Alexandra C. Brand ◽  
Mathias L. Richard ◽  
Sadri Znaidi ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Emi Ito ◽  
Kazuo Ebine ◽  
Seung-won Choi ◽  
Sakura Ichinose ◽  
Tomohiro Uemura ◽  
...  

RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.


2020 ◽  
Author(s):  
Sierra Rosiana ◽  
Liyang Zhang ◽  
Grace H. Kim ◽  
Alexey V. Revtovich ◽  
Arjun Sukumaran ◽  
...  

AbstractCandida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans’ ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, or in every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.SummaryCandida albicans is a human fungal pathogen and cause of life-threatening systemic infections. Cell surface-associated adhesins play a central role in this pathogen’s ability to establish infection. Here, we provide a comprehensive analysis of adhesin factors, and their role in fungal virulence. Exploiting a high-throughput workflow, we screened an adhesin mutant library using C. elegans as a simple model host, and identified mutants and genetic interactions involved in virulence. We found that adhesin mutants are impaired in in vitro pathogenicity, irrespective of their virulence. Together, this work provides new insight into the role of adhesin factors in mediating fungal virulence.


2017 ◽  
Vol 68 (2) ◽  
pp. 220-231 ◽  
Author(s):  
Gábor Máté ◽  
Dominika Kovács ◽  
Zoltán Gazdag ◽  
Miklós Pesti ◽  
Árpád Szántó

2014 ◽  
Vol 44 (1-2) ◽  
pp. 9-16 ◽  
Author(s):  
Vitalij Novickij ◽  
Audrius Grainys ◽  
Jurgita Svediene ◽  
Svetlana Markovskaja ◽  
Algimantas Paskevicius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document