Faculty Opinions recommendation of The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release.

Author(s):  
Edwin Chapman
2016 ◽  
Vol 216 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Joseph J. Bruckner ◽  
Hong Zhan ◽  
Scott J. Gratz ◽  
Monica Rao ◽  
Fiona Ukken ◽  
...  

The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release.


2019 ◽  
Vol 20 (9) ◽  
pp. 2217 ◽  
Author(s):  
Sumiko Mochida

Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.


2020 ◽  
Vol 22 (1) ◽  
pp. 327
Author(s):  
Sumiko Mochida

An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.


Neuron ◽  
2007 ◽  
Vol 53 (4) ◽  
pp. 563-575 ◽  
Author(s):  
Kristian Wadel ◽  
Erwin Neher ◽  
Takeshi Sakaba

Nature ◽  
1995 ◽  
Vol 375 (6531) ◽  
pp. 493-497 ◽  
Author(s):  
Vincent A. Pieribone ◽  
Oleg Shupliakov ◽  
Lennart Brodin ◽  
Sabine Hilfiker-Rothenfluh ◽  
Andrew J. Czernik ◽  
...  

Physiology ◽  
1995 ◽  
Vol 10 (1) ◽  
pp. 42-46
Author(s):  
G Thiel

Synaptic vesicles play a fundamental role in brain function by mediating the release of neurotransmitters. Neurons do not use an entirely unique secretion apparatus but rather a modification of the general secretion machinery. Moreover, the synaptic vesicle cycle has many similarities with intracellular vesicle trafficking pathways.


Sign in / Sign up

Export Citation Format

Share Document