Faculty Opinions recommendation of Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex.

Author(s):  
John Dani
Neuron ◽  
2007 ◽  
Vol 54 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Jonathan J. Couey ◽  
Rhiannon M. Meredith ◽  
Sabine Spijker ◽  
Rogier B. Poorthuis ◽  
August B. Smit ◽  
...  

2012 ◽  
Vol 107 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Aleksey V. Zaitsev ◽  
Roger Anwyl

The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca2+-dependent, K+-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.


NeuroImage ◽  
2016 ◽  
Vol 143 ◽  
pp. 204-213 ◽  
Author(s):  
Elias Paolo Casula ◽  
Maria Concetta Pellicciari ◽  
Silvia Picazio ◽  
Carlo Caltagirone ◽  
Giacomo Koch

2006 ◽  
Vol 18 (10) ◽  
pp. 2414-2464 ◽  
Author(s):  
Peter A. Appleby ◽  
Terry Elliott

In earlier work we presented a stochastic model of spike-timing-dependent plasticity (STDP) in which STDP emerges only at the level of temporal or spatial synaptic ensembles. We derived the two-spike interaction function from this model and showed that it exhibits an STDP-like form. Here, we extend this work by examining the general n-spike interaction functions that may be derived from the model. A comparison between the two-spike interaction function and the higher-order interaction functions reveals profound differences. In particular, we show that the two-spike interaction function cannot support stable, competitive synaptic plasticity, such as that seen during neuronal development, without including modifications designed specifically to stabilize its behavior. In contrast, we show that all the higher-order interaction functions exhibit a fixed-point structure consistent with the presence of competitive synaptic dynamics. This difference originates in the unification of our proposed “switch” mechanism for synaptic plasticity, coupling synaptic depression and synaptic potentiation processes together. While three or more spikes are required to probe this coupling, two spikes can never do so. We conclude that this coupling is critical to the presence of competitive dynamics and that multispike interactions are therefore vital to understanding synaptic competition.


Sign in / Sign up

Export Citation Format

Share Document