Faculty Opinions recommendation of Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity.

Author(s):  
Jonathan Flint
Cell ◽  
2008 ◽  
Vol 135 (3) ◽  
pp. 535-548 ◽  
Author(s):  
Zhiping Wang ◽  
Jeffrey G. Edwards ◽  
Nathan Riley ◽  
D. William Provance ◽  
Ryan Karcher ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Emily Eischen Martin ◽  
Erica Wleklinski ◽  
Hanh T. M. Hoang ◽  
Mohiuddin Ahmad

AMPA receptors (AMPAR) are organized into supramolecular complexes in association with other membrane proteins that provide exquisite regulation of their biophysical properties and subcellular trafficking. Proline-rich transmembrane protein 1 (PRRT1), also named as SynDIG4, is a component of native AMPAR complexes in multiple brain regions. Deletion of PRRT1 leads to altered surface levels and phosphorylation status of AMPARs, as well as impaired forms of synaptic plasticity. Here, we have investigated the mechanisms underlying the observed regulation of AMPARs by investigating the interaction properties and subcellular localization of PRRT1. Our results show that PRRT1 can interact physically with all AMPAR subunits GluA1-GluA4. We decipher the membrane topology of PRRT1 to find that contrary to the predicted dual membrane pass, only the second hydrophobic segment spans the membrane completely, and is involved in mediating the interaction with AMPARs. We also report a physical interaction of PRRT1 with phosphatase PP2B that dephosphorylates AMPARs during synaptic plasticity. Our co-localization analysis in primary neuronal cultures identifies that PRRT1 associates with AMPARs extrasynaptically where it localizes to early and recycling endosomes as well as to the plasma membrane. These findings advance the understanding of the mechanisms by which PRRT1 regulates AMPARs under basal conditions and during synaptic plasticity.


Science ◽  
2004 ◽  
Vol 305 (5692) ◽  
pp. 1972-1975 ◽  
Author(s):  
M. Park

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 542
Author(s):  
Alessandro Vacchini ◽  
Cinzia Cancellieri ◽  
Samantha Milanesi ◽  
Sabrina Badanai ◽  
Benedetta Savino ◽  
...  

The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the β-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a β-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.


Sign in / Sign up

Export Citation Format

Share Document