membrane topology
Recently Published Documents


TOTAL DOCUMENTS

626
(FIVE YEARS 68)

H-INDEX

72
(FIVE YEARS 5)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammad Ameen Al-Aghbar ◽  
Ashwin K. Jainarayanan ◽  
Michael L. Dustin ◽  
Steve R. Roffler

AbstractT cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.


2022 ◽  
Author(s):  
Sören Alsleben ◽  
Ralf Kölling

The endosomal sorting complex required for transport (ESCRT)-III mediates budding and abscission of intraluminal vesicles (ILVs) into multivesicular endosomes. To further define the role of the ESCRT-III associated protein Mos10/Vps60 in ILV formation, we screened for new interaction partners by SILAC/MS. Here, we focused on the newly identified interaction partner Vps68. Our data suggest that Vps68 cooperates with ESCRT-III in ILV formation. The deletion of VPS68 caused a sorting defect similar to the SNF7 deletion, when the cargo load was high. The composition of ESCRT-III was altered, the level of core components was higher and the level of associated proteins was lower in the deletion strain. This suggests that a shift occurs from an active complex to a disassembly competent complex and that this shift is blocked in the Δvps68 strain. We present evidence that during this shift Snf7 is replaced by Mos10. Vps68 has an unusual membrane topology. Two of its potential membrane helices are amphipathic helices localized to the luminal side of the endosomal membrane. Based on this membrane topology we propose that Vps68 and ESCRT-III cooperate in the abscission step by weakening the luminal and cytosolic leaflets of the bilayer at the abscission site.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2448
Author(s):  
Elisa Fanunza ◽  
Nicole Grandi ◽  
Marina Quartu ◽  
Fabrizio Carletti ◽  
Laura Ermellino ◽  
...  

The evasion of the Interferon response has important implications in Zika virus (ZIKV) disease. Mutations in ZIKV viral protein NS4B, associated with modulation of the interferon (IFN) system, have been linked to increased pathogenicity in animal models. In this study, we unravel ZIKV NS4B as antagonist of the IFN signaling cascade. Firstly, we reported the genomic characterization of NS4B isolated from a strain of the 2016 outbreak, ZIKV Brazil/2016/INMI1, and we predicted its membrane topology. Secondly, we analyzed its phylogenetic correlation with other flaviviruses, finding a high similarity with dengue virus 2 (DEN2) strains; in particular, the highest conservation was found when NS4B was aligned with the IFN inhibitory domain of DEN2 NS4B. Hence, we asked whether ZIKV NS4B was also able to inhibit the IFN signaling cascade, as reported for DEN2 NS4B. Our results showed that ZIKV NS4B was able to strongly inhibit the IFN stimulated response element and the IFN-γ-activated site transcription, blocking IFN-I/-II responses. mRNA expression levels of the IFN stimulated genes ISG15 and OAS1 were also strongly reduced in presence of NS4B. We found that the viral protein was acting by suppressing the STAT1 phosphorylation and consequently blocking the nuclear transport of both STAT1 and STAT2.


2021 ◽  
Author(s):  
Jorge Ramirez-Franco ◽  
Fodil Azzaz ◽  
Marion Sangiardi ◽  
G&eacuteraldine Ferracci ◽  
Fahamoe Youssouf ◽  
...  

Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of this therapeutic tool bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside. This interaction allows a lipid-binding loop of BoNT/B to engage in a series of concomitant interactions with the glycone part of GT1b and the transmembrane domain of synaptotagmin. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiko Utsumi ◽  
Takuro Hosokawa ◽  
Mayu Shichita ◽  
Misato Nishiue ◽  
Natsuko Iwamoto ◽  
...  

AbstractThe membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.


2021 ◽  
Author(s):  
Jinfeng Shao ◽  
Gunjan Arora ◽  
Javier Manzella-Lapeira ◽  
Joseph A. Brzostowski ◽  
Sanjay A. Desai

AbstractIntracellular malaria parasites export many proteins into their host cell, inserting several into the erythrocyte plasma membrane to enable interactions with their external environment. While static techniques have identified some surface-exposed proteins, other candidates have eluded definitive localization and membrane topology determination. Moreover, both export kinetics and the mechanisms of membrane insertion remain largely unexplored. We introduce Reporter of Insertion and Surface Exposure (RISE), a method for continuous nondestructive tracking of antigen exposure on infected cells. RISE utilizes a small 11 aa NanoLuc fragment inserted into a target protein and detects surface exposure through high-affinity complementation. We tracked insertion of CLAG3, a malaria parasite protein linked to nutrient uptake, throughout the P. falciparum cycle in human erythrocytes. Our approach also revealed key determinants of trafficking and surface exposure. Removal of a C-terminal transmembrane domain aborted export. Unexpectedly, certain increases in the exposed reporter size improved surface exposure by up to 50-fold, revealing that both size and charge of the extracellular epitope influence membrane insertion. Insertion of parasite proteins at the host cell surface and antigen accessibility is regulated by multiple factors, enabling intracellular parasite survival and immune evasion under a broad range of conditions.


2021 ◽  
Author(s):  
Justin Caspar ◽  
Guanyang Xue ◽  
Robert Krysko ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations were conducted to evaluate the effect of a wavy channel in a two-dimensional vacuum membrane distillation module. The curvature was induced using a sinusoidal profile along the membrane and bottom wall. Contour plots and line profiles provide a detailed view of the flow structure and the effect of the proposed configuration on the flux performance. Module averaged temperatures, concentrations, and flux values were calculated for two selected Reynolds numbers. Results indicate that at low Reynolds numbers, the wiggly module performs worse than the flat sheet module. Due to the channel’s curvature changing the direction of the bulk flow and the absence of secondary flows to promote mixing, the thermal boundary layer along the membrane surface can be more intense versus a flat sheet membrane, causing more intense temperature polarization and reduced flux performance. At Reynolds number 500, there was a 5% decrease in the flux for the curved versus flat case. However, in some curved channel areas, the local performance was superior to the flat channel. Increasing the Reynolds number could aid the performance of the wiggly channel immensely.


2021 ◽  
Vol 13 ◽  
Author(s):  
Emily Eischen Martin ◽  
Erica Wleklinski ◽  
Hanh T. M. Hoang ◽  
Mohiuddin Ahmad

AMPA receptors (AMPAR) are organized into supramolecular complexes in association with other membrane proteins that provide exquisite regulation of their biophysical properties and subcellular trafficking. Proline-rich transmembrane protein 1 (PRRT1), also named as SynDIG4, is a component of native AMPAR complexes in multiple brain regions. Deletion of PRRT1 leads to altered surface levels and phosphorylation status of AMPARs, as well as impaired forms of synaptic plasticity. Here, we have investigated the mechanisms underlying the observed regulation of AMPARs by investigating the interaction properties and subcellular localization of PRRT1. Our results show that PRRT1 can interact physically with all AMPAR subunits GluA1-GluA4. We decipher the membrane topology of PRRT1 to find that contrary to the predicted dual membrane pass, only the second hydrophobic segment spans the membrane completely, and is involved in mediating the interaction with AMPARs. We also report a physical interaction of PRRT1 with phosphatase PP2B that dephosphorylates AMPARs during synaptic plasticity. Our co-localization analysis in primary neuronal cultures identifies that PRRT1 associates with AMPARs extrasynaptically where it localizes to early and recycling endosomes as well as to the plasma membrane. These findings advance the understanding of the mechanisms by which PRRT1 regulates AMPARs under basal conditions and during synaptic plasticity.


2021 ◽  
Vol 1863 (7) ◽  
pp. 183608
Author(s):  
Gerard Duart ◽  
Maria J. García-Murria ◽  
Ismael Mingarro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document