dependent signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

419
(FIVE YEARS 63)

H-INDEX

58
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Raquel de Souza Vieira ◽  
Marilda Savoia Nascimento ◽  
Isaú Henrique Noronha ◽  
José Ronnie Carvalho Vasconcelos ◽  
Luiz Alberto Benvenuti ◽  
...  

A variety of signaling pathways are involved in the induction of innate cytokines and CD8+ T cells, which are major players in protection against acute Trypanosoma cruzi infection. Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway promotes IFN-β production in response to Trypanosoma cruzi, but the role for STING, a main interactor of these proteins, remained to be addressed. Here, we demonstrated that STING signaling is required for production of IFN-β, IL-6, and IL-12 in response to Trypanosoma cruzi infection and that STING absence negatively impacts activation of IRF-dependent pathways in response to the parasite. We reported no significant activation of IRF-dependent pathways and cytokine expression in RAW264.7 macrophages in response to heat-killed trypomastigotes. In addition, we showed that STING is essential for T. cruzi DNA-mediated induction of IFN-β, IL-6, and IL-12 gene expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice have significantly higher parasitemia from days 5 to 8 of infection and higher heart parasitism at day 13 after infection. Although we observed similar heart inflammatory infiltrates at day 13 after infection, IFN-β, IL-12, CXCL9, IFN-γ, and perforin gene expression were lower in the absence of STING. We also showed an inverse correlation between parasite DNA and the expression of CXCL9, IFN-γ, and perforin genes in the hearts of infected animals at day 13 after infection. Finally, we reported that STING signaling is required for splenic IFN-β and IL-6 expression early after infection and that STING deficiency results in lower numbers of splenic parasite-specific IFN-γ and IFN-γ/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in immunity to Trypanosoma cruzi.


2021 ◽  
Author(s):  
Seokwon Shin ◽  
Jayeon Park ◽  
Ye Eun Lee ◽  
Hanbin Ko ◽  
Hyung‐Sun Youn

Author(s):  
Jiafa Ren ◽  
Xiaohan Lu ◽  
Gentzon Hall ◽  
Jamie R Privratsky ◽  
Matthew J Robson ◽  
...  

IL-1 receptor (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of the podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated the podocyte IL-1R1 in mice (PKO). We then subjected PKO mice and wild-type (WT) controls to 2 glomerular injury models: nephrotoxic serum (NTS)- and adriamycin (ADR)-induced nephropathy. Surprisingly, we found IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and ADR-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between WT and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie Maumus ◽  
Guillaume Fonteneau ◽  
Maxime Ruiz ◽  
Said Assou ◽  
Hassan Boukhaddaoui ◽  
...  

Abstract Background Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. Results We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. Conclusion NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity. Graphical abstract


Author(s):  
Gaspar Peña-Munzenmayer ◽  
Yusuke Kondo ◽  
Constanza Salinas ◽  
José Sarmiento ◽  
Sebastian Brauchi ◽  
...  

Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is co-expressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular N-terminal domain according to a homology model of Ae4. N-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.


2021 ◽  
Author(s):  
Juli Bai ◽  
Feng Liu

AbstractThe cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.


2021 ◽  
Author(s):  
Fang Wang ◽  
Peng Fang ◽  
Huiping Yan ◽  
Xiangzhuo Ji ◽  
Yunling Peng

Abstract The homeodomain leucine zipper (HD-Zip) IV transcription factor is indispensable in the response of plants to abiotic stress. Systematic studies have been carried out in Arabidopsis, rice and other species from which a series of stress resistance-related genes have been isolated. However, the function of the HD-Zip-IV protein in maize is not clear. In this study, we cloned the HD-Zip-IV gene ZmHDZIV13 and identified its function in the stress response. Our phylogenetic analysis showed that ZmHDZIV13 and AtHDG11 had high homology and might have similar functions. The heterologous overexpression of ZmHDZIV13 in Arabidopsis resulted in sensitivity to abscisic acid (ABA), salt tolerance during germination and drought tolerance in seedlings. Under drought stress, the transgenic Arabidopsis showed stronger drought resistance than the wild-type showed (control). The malondialdehyde content of ZmHDZIV13 transgenic plants was lower than that of the control, and the relative water content and proline content were significantly higher than those of the control. After the drought was relieved, the expression of P5CS1, RD22, RD29B, RD29A, NCED3 and ERD1 were upregulated in transgenic Arabidopsis. Also, modified tobacco plants (35S::ZmHDZIV13) exhibited proper stomatal changes in response to drought conditions. These results show that ZmHDZIV13, as a stress-responsive transcription factor, plays a role in the positive regulation of abiotic stress tolerance and can regulate an ABA-dependent signaling pathway to regulate drought response in plants.


Sign in / Sign up

Export Citation Format

Share Document