scholarly journals Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 542
Author(s):  
Alessandro Vacchini ◽  
Cinzia Cancellieri ◽  
Samantha Milanesi ◽  
Sabrina Badanai ◽  
Benedetta Savino ◽  
...  

The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the β-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a β-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1730-P
Author(s):  
RASHEED AHMAD ◽  
NADEEM AKHTER ◽  
SHIHAB P. KOCHUMON ◽  
AREEJ ABU ALROUB ◽  
REEBY S. THOMAS ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 109013
Author(s):  
Xiaochun Wu ◽  
Shengying Zhang ◽  
Cuiqin Long ◽  
Zhen An ◽  
Xiaoyong Xing ◽  
...  

2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


Sign in / Sign up

Export Citation Format

Share Document