Faculty Opinions recommendation of A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii.

Author(s):  
Roberto Docampo
mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Maude F. Lévêque ◽  
Laurence Berry ◽  
Michael J. Cipriano ◽  
Hoa-Mai Nguyen ◽  
Boris Striepen ◽  
...  

ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. IMPORTANCE By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens.


2018 ◽  
Vol 111 (1) ◽  
pp. 46-64 ◽  
Author(s):  
Irene Heredero-Bermejo ◽  
Joseph M. Varberg ◽  
Robert Charvat ◽  
Kylie Jacobs ◽  
Tamila Garbuz ◽  
...  

2012 ◽  
Vol 181 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Elena S. Suvorova ◽  
Margaret M. Lehmann ◽  
Stella Kratzer ◽  
Michael W. White

2010 ◽  
Vol 59 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Osamu Kawase ◽  
Yoshifumi Nishikawa ◽  
Hiroshi Bannai ◽  
Makoto Igarashi ◽  
Tomohide Matsuo ◽  
...  

2009 ◽  
Vol 19 (4) ◽  
pp. 267-276 ◽  
Author(s):  
Giel G. van Dooren ◽  
Sarah B. Reiff ◽  
Cveta Tomova ◽  
Markus Meissner ◽  
Bruno M. Humbel ◽  
...  

2016 ◽  
Vol 144 (12) ◽  
pp. 2568-2577 ◽  
Author(s):  
B. M. MANGIAVACCHI ◽  
F. P. VIEIRA ◽  
L. M. G. BAHIA-OLIVEIRA ◽  
D. HILL

SUMMARYThe aim of this study was to contribute to the better understanding of the relative epidemiological importance of different modes of infection with respect to horizontal transmission of Toxoplasma gondii in endemic settings. We investigated the prevalence of salivary IgA against a sporozoite-specific embryogenesis-related protein (TgERP) in a highly endemic area for toxoplasmosis in Brazil in order to pinpoint parasite transmission via oocysts. Prevalence calculated by salivary IgA specific to TgERP was compared to the prevalence calculated by serum IgG against both TgERP and tachyzoites (in conventional serological tests). Prevalence calculated by different serological and salivary parameters varied in the studied age groups. However, for the 15–21 years age group, values for T. gondii prevalence estimated by conventional serological tests and by anti-TgERP salivary IgA were similar; i.e. 68·7% and 66·6% or 66·7%, respectively, using two different cut-off parameters for salivary IgA anti-TgERP. Furthermore, salivary IgA anti-TgERP for this age group presented the highest specificity (93·33%), sensitivity (93·94%), and likelihood (14·09) compared to all the other age groups. These data demonstrate the importance of age for salivary IgA investigation against TgERP to estimate the mode of T. gondii transmission in endemic settings.


2009 ◽  
Vol 166 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
Wu Xiang ◽  
Zhang Qiong ◽  
Liu Li-peng ◽  
Tan Kui ◽  
Guan Jian-wu ◽  
...  

mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Nathan M. Chasen ◽  
Beejan Asady ◽  
Leandro Lemgruber ◽  
Rossiane C. Vommaro ◽  
Jessica C. Kissinger ◽  
...  

ABSTRACT Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries. Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries.


2019 ◽  
Vol 15 (4) ◽  
pp. e1007512 ◽  
Author(s):  
Carmen Melatti ◽  
Manuela Pieperhoff ◽  
Leandro Lemgruber ◽  
Ehmke Pohl ◽  
Lilach Sheiner ◽  
...  

2017 ◽  
Vol 19 (6) ◽  
pp. e12712 ◽  
Author(s):  
Hoa Mai Nguyen ◽  
Hiba El Hajj ◽  
Rana El Hajj ◽  
Nadim Tawil ◽  
Laurence Berry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document