Faculty Opinions recommendation of Mating behavior and the evolution of sperm design.

Author(s):  
Adam Jones
Keyword(s):  
1970 ◽  
Vol 70 (3, Pt.1) ◽  
pp. 413-416 ◽  
Author(s):  
Ernest HaRd ◽  
Knut Larsson
Keyword(s):  

2020 ◽  
Vol 13 (2) ◽  
pp. 169-177
Author(s):  
Fay A. Guarraci ◽  
Chantal M.F. Gonzalez ◽  
Devon Lucero ◽  
Lourdes K. Davis ◽  
Sarah H. Meerts

Background: Aging is associated neuroendocrine changes in women. Animals can be used to model these changes, as well as changes in reproductive behavior. Objective: The current study was designed to characterize mating behavior across age and assess the effects of age and sexual history on mating behavior. Methods: Sexual motivation was assessed using the partner-preference test, in which a female rat is given the choice to interact with a same-sex conspecific or a sexually-vigorous male rat, with which she can mate. Results: Across repeated mating tests (2-12 months of age), female rats spent more time with the male, displayed more solicitation behaviors, were less likely to leave the male after mounts, but visited both stimulus animals less frequently. Comparing a separate group of age-matched, hormoneyoked female rats mated for the first time at 12 months of age to female rats mated for the first time at 2 months of age showed that the 12 month rats visited both stimulus animals less, were less likely to leave the male after mounts, took longer to return to the male after mounts, and displayed fewer solicitation behaviors than their younger counterparts. Relative to middle-aged female rats once they were sexually experienced, 12 month naïve rats spent less time with the male, were more likely to leave the male after mounts, and displayed fewer solicitation behaviors. Furthermore, 12 month naïve rats failed to discriminate between the stimulus animals, visiting both stimulus animals at the same rate unlike 2 month naïve or 12 month experienced rats. Conclusion: Taken together, these results suggest that aging affects some measures of sexual behavior, but most effects of age can be mitigated by regular, repeated mating.


2017 ◽  
Vol 86 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Xin Tong ◽  
Lu Jiang ◽  
Bao-Zhen Hua

Sexually reproductive insects exhibit diverse mating behaviors. However, the mating pattern remains unknown for Panorpodes of Panorpodidae to date. In this study, we investigated the mating behavior and copulatory mechanism of the short-faced scorpionfly Panorpodes kuandianensis Zhong, Zhang and Hua, 2011 for the first time. The results show that the male provides a salivary mass as a nuptial gift to the female and starts to copulate with the female in a V-shaped position, then changes to an end-to-end position by temporarily twisting the female abdominal segments VII−IX by 180°. During mating the basal processes and the basal teeth of the gonostyli and the hypandrium are used to obtain copulation and sustain the coupling of genitalia to secure successful sperm transfer. This unique mating pattern is greatly different from that of other Mecoptera reported and is likely evolved as an adaptation in the context of sexual conflict.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valeria Fattoruso ◽  
Gianfranco Anfora ◽  
Valerio Mazzoni

AbstractThe greenhouse whitefly (GW), Trialeurodes vaporariorum is considered one of the most harmful insect pests in greenhouses worldwide. The GW mating behavior has been partially investigated and its vibrational communication is only in part known. A deeper knowledge of its intraspecific communication is required to evaluate the applicability of control methods based on techniques of behavioral manipulation. In this study, for the first time, we provided a detailed ethogram of the GW mating behavior and we characterized the vibrational signals emitted during the process of pair formation. We characterized two types of male vibrational emissions (“chirp” and “pulses”), differently arranged according to the behavioral stage to form stage-specific signals, and a previously undescribed Male Rivalry Signal. We recorded and characterized two new female signals: The Female Responding Signal and the Female Rejective Signal. The mating behavior of GW can be divided into six different stages that we named “call”, “alternated duet”, “courtship”, “overlapped duet”, “mating”, “failed mating attempt”. The analysis performed with the Markovian behavioral transition matrix showed that the “courtship” is the key stage in which male exhibits its quality and can lead to the “overlapped duet” stage. The latter is strictly associated to the female acceptance and therefore it plays a crucial role to achieve mating success. Based on our findings, we consider the use of vibrational playbacks interfering with GW mating communication a promising option for pest control in greenhouses. We discuss the possibility to start a research program of behavioral manipulation to control the populations of GW.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Aline Moreira Dias ◽  
Miguel Borges ◽  
Maria Carolina Blassioli Moraes ◽  
Matheus Lorran Figueira Coelho ◽  
Andrej Čokl ◽  
...  

Stink bugs are major pests in diverse crops around the world. Pest management strategies based on insect behavioral manipulation could help to develop biorational management strategies of stink bugs. Insect mating disruption using vibratory signals is an approach with high potential for pest management. The objective of this work was to investigate the effect of conspecific female rival signals on the mating behavior and copulation of three stink bug species to establish their potential for mating disruption. Previously recorded female rival signals were played back to bean plants where pairs of the Neotropical brown stink bug, Euschistus heros, and two green stink bugs, Chinavia ubica and Chinavia impicticornis were placed. Vibratory communication and mating behavior were recorded for each pair throughout the experimental time (20 min). Female rival signals show a disrupting effect on the reproductive behavior of three conspecific investigated stink bug species. This effect was more clearly expressed in E. heros and C. ubica than in C. impicticornis. The likelihood of copulating in pairs placed on control plants, without rival signals, increased 29.41 times in E. heros, 4.6 times in C. ubica and 1.71 times in C. impicticornis. However, in the last case, the effect of female rivalry signals in copulation was not significant. The effect of mating disruption of female rival signals of the three stink bug species may originate from the observed reduction in specific vibratory communication signals emitted, which influences the duet formation and further development of different phases of mating behavior. Our results suggest that female rival signals have potential for application in manipulation and disruption of mating behavior of stink bugs. Further work needs to focus on the effects of female rival signals used in long duration experiments and also their interactions with chemical communication of stink bugs.


Sign in / Sign up

Export Citation Format

Share Document